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Committee News

SABR XX. The convention went very
well, without last year's drama. A number
of the presentations incorporated statis-
tical methods, and we are fortunate enough
to have four of these presentations for
this issue of the Newsletter. .

About 40 people attended the Statis-
tical Analysis Committee meeting. We dis-
cussed what the Committee should be doing
over the next year, and it looks like the
bibliography project will be going for-
wvard. (I have heard from a number of you
on the bibliography project, and I will
writing you individually in the next week
or so.)

In addition to the bibliography pro-

7~ Nject, a number of pPeople suggested finding

24 way of facilitating communications
between people working in the same area.
One idea which surfaced was for people to
volunteer as "clearinghouse coordinators”
for specific research areas.

Here's how this would work: Once we
have volunteers to serve as coordinators
in specific areas, we would hope that
people working in those areas would keep
in touch with the coordinators, to let
them know what they are doing and what
sort of progress they are making. Mark
Pankin (1018 N. Cleveland St., Arlington,
VA 22201, 703-524-0937) has already
volunteered to serve as a coordinator for
work on batting order effects (a summary
of his SABR XX presentation is included in
this Newsletter).

Also, although it seems like & long way
off, SABR XXI will be coming up soon.

Once again, I'd like to organize a session
in which a series of presentations using
statistical tools can be made together.

If you have something you're working on

~and plan to be in New York for next year's

convention, please let me know.

September, 1990

Future Issues. The December issue is
looking good. I have pieces in hand from
Rob Wood, Jorgen Rasmussen and Bob Davis,
with something to come from John Stryker
and something else I'm working on. It
should be a good issue. But I always need
material. A good length is 3-4 pages,
typed, single-spaced (although if you send
something typed, send it double-spaced).
If you can send a diskette, I use Micro-
soft Word Version 5.0 (but any earlier
version of Word will do); if you use a
different word processing program, send me
an ASCII file and I can convert it.

1992 and Beyond. I'm approaching the
end of my second year as chair of the
Statistical Analysis Committee, and about
one more year is all I'll be able to keep
doing this. I hope that by next year's
SABR convention we can have an idea who is
willing to take over the committee. The
most important--and most difficult--thing
is editing the newsletter and keeping in
touch with the committee members (and I
don't do very well at keeping in touch, as
many of you know). 1If you are interested
in taking on this responsibility, let me
know and maybe we can work out a gradual
transfer.

Committee Roster and Questionnaire., I
hope to publish a Committee Roster, either
as a part of the December issue, or
separately in between. As a part of that,
I have included, for Committee members, a
questionnaire in this mailing. Please
fill it out and return it; we need to know
what you are doing, are interested in
doing, and are willing to do.

Donald A. Coffin

Division of Business and Economics
Indiana University Northwest

3400 Broadvay

Cary, IN 46408

219-980-6646



Bayes' Theorem: A Way To Help Us
To Revise Our Opinions

By Alden Mead

Introduction. In trying to understand
results in baseball (or, anything else), we
are frequently confronted with the neces-
sity of revising opinions that we thought
were based on sound reasoning in the light
of actual events. Examples abound, but
the two that we'll be talking about are
the two Chicago teams in 1990.

In 1989, the Cubs won their division,
the White Sox finished last in theirs.
Most experts predicted that the Cubs would
contend this year, and the Sox would again
be also-rans. In fact, as this is written
(July), the Cubs are flirting with the
cellar while the Sox are contending for
the lead. On the other hand, the record
of the past is still there, and the
experts who picked the Cubs as contenders
and the Soxs as something else were
(presumadbly) not fools. Maybe what has
happened up to now is a fluke, not
reflecting the true abilities of the
" teams. But we can't just ignore what has

happened up to now. The question is,
exactly how do we decide how to revise our
opinions of these teams in light of the
new information.

The answer is given by Bayes' theorenm,
a very simple result dating from the 18th
century, which has recently attracted a
lot of attention from statisticians. If
we formulate the question correctly, it
tells us exactly how to revise our opin-
ions. To use it, we need two things: An
initial estimate, expressed in terms of
probabilities, and the new information,
whatever it is.

The next section gives the mathematics,
and can be skipped by those who don't care
about such things. After that, we analyze
the Cubs and Sox.

Mathematics. To use Bayes' theorem, we
have to work with probabilities, which are
pretty well understood by anyone who works
with baseball statistics. The probability
P(x) that something (called x) is true, or
will happen, is a number between 0 and 1,
with 0 denoting impossibility and 1
denoting certainty. In between, it's the

fraction of the times that x will be true.

For instance, the probability that a 300
hitter will get a hit in a randomly chosen
at-bat is .300. We also need to use what
are called conditional probabilities. The ™\
conditional probability P(x y) is the
probability that x will happen given that
y is known. Thus, if our .300 hitter is a
left-handed batter that does best against
righthanders, the probability of his
getting a hit, given that the pitcher is a
righthander, P(H r), might be ,330.

If you have any experience at all
working with probabilities, it's pretty
easy to answer questions like "What is the
probability that a .500 team will win 3 of
its first 4 games?” We can express that
as P(3-1|.500), the probability of a 3-1
record in 4 games, given that we have a
.500 team. To calculate this, we just
realize that the probability of any
particular sequence of three wins and one
loss for such a team is (.5)* = ,625, and
that there are 4 such sequences (depending
on which of the four games is lost), so
the probability is (4)%(.0625) = ,25.
What we want, though, is to be able to
change our estimate of the team based on
what it’'s done; that is, we'd like to know
such things as P(.500]|3-1), the probabil- /
ity that it's a .500 team, given that it's
won 3 of its first 4 games. At first
glance, it doesn't seem clear how to get
at this; in fact, it's pretty easy via
Bayes' theorem, which tells us how to turn
around conditional probabilities--how to
get P(x|y) when we know P(y|x), or how to
get P(.500]3-1) when we know P(3-1].500).

The theorem is really easy to prove.
It starts from using two ways to write

P(xMy), the probability that both x and y
are true:

P(xNy) = P(x|y)P(y) = P(y|x)P(x) (1)

All this says is that, for both x and y to
be true, we must first have y given, and
then x, given that y is true. Or, of
course, the other way around. But, just
by dividing, we get the reversal of the
conditional probabilities:

P(x|y) = [P(y|x)P(x)]/P(y) (2)

That's the theorem! If you know P(x) 2\
and P(y), the total probabilities for both




events, you can reverse the conditional
. probabilities.

To get something like P(.500 3-1), we
need not only P(3-1 ,500), but also

7 3(.500), the probability (before we get

the new information) that it's a .500 team
and P(3-1), the probability that it'll win
3 out of 4 games withoug knowing how good
the team is. To get at this, we'll need a
little more.

Let p be the true probability that our
team will win a given game, so that its
winning percentage over a sufficiently
long season will be p. Based on all our
information, we can't know p exactly, but
maybe we can place it within limits. Let
«p> be our best guess as to the value of
p. We'll use o to denote the "standard
deviation,” which means approximately that
we know with 2/3 probability that the
actual p lies between <«p»-o and <«p»>+o. We
can conveniently represent the probability
P(p) (ectually the probability density,
the probability per unit of change in p)
by the formula:

[(V+D-1)1/(v=1) 1(D-1)1 }p V1) (1-p) (D-1)

/,\ghere V is the number of victories, D is
‘he number of defeats, and (X)! is "X
factorial”, or x(x-1)(x-2)(x-3)...(2)(1).
This probability density is normalized
(the total probability that p will be
between 0 and 1 is just 1), and it goes to
0 at both ends, reflecting the fact that
there are no invincible teams (1.000), and
also no totally hopeless teams (.000).
It's a fairly easy calculation to get
“p> and o in terms of V and D, and vice-

versa. The results are:
<«p» = V/(V+D) and (4)
o = V(VD)/(V+D) B (Vv+D+1) (5)

Reversing this, we can get V and D in
terms of <«p> and o. This is most easily
expressed in the following way:

V = «p»Q (6a)
D = (l-«wp»)Q (éb)
wvhere

N

Q= [«p(l-sp»)/0®]-1 (1)

Now, suppose our initial estimate of a
team's ability is given by values of ep»
and o, our best guess as to the prowess of
the team, and an uncertainty, so that we
feel that, with 2/3 probability, the
team's actual ability is within o one way
or the other of <«p>». Suppose further that
the team starts the season with v victor-
ies and d defeats. Plugging all this into
the equations, Bayes' theorem tells us to
revise our estimate just by replacing V by
V+v and D by D+d. It's as simple as
that!.

For example, suppose at the beginning
all we know about a team is that it's a
major league team playing in the current
era. Checking all the teams from 1979-
1989, and leaving out the strike season of
1981, we find an average of .500 (of
course) and a standard deviation of 0.066.
Using the formulas, this leads to V=D =
28.2. 1If now our team wins 3 out of 4,
the new values would be V+#v = 31,2 and D+d
= 29.2 Figure 1 (below) shows how this
affects our estimate. The light line
shows our guess before the team won 3 out
of 4. The dark line is our revised view.
Note that we now view the team somewhat
more favorably, but not much (the curve is
shifted toward higher values of p, that
is, toward higher winning percentages).

FIGURE 1

Cubs and Sox. In 1989, the Cubs had a
winning percentage of .574. Suppose that,
at the beginning of this year, we estimate
that they have a 2/3 chance of finishing
within 10 games (.062) of the same mark;




that is, «<p>»> = ,574 and o = .062. This
leads to initial values for V and D of
35.94 and 26.67 respectively. As of July
15, the 1990 Bruins had a 36-52 record, so
our revised values should be V¢v = 35,94+
36 = 71.94 and D+d = 26.67 + 52 = 78.67.
This leads to new values <«p» = 477 (a 77~
85 season record) and o = ,041 (plus or
minus 6.6 wins). The graph is shown as
Figure 2 (below).

FIGURE 2

As for the Sox, last year they were
.429. If we start out thinking that they
will finish within 10 games, or .062, of
that, this leads to V = 26.91 and D =
35.82. Adding this to their 51-31 record
as of July 15, we get V+v = 77,91 and D+d
= 66.2=82. We then get revised estimates
of <«p» = 538 and o = ,041, or an 87-75
season (plus or minus 6.6 wins). Figure 3
shows us the 1990 Sox, incorporating the
new information.,

FIGURE 3

Defensive Average: Baseball Defense
Counts Enough To Be Counted

By Pete DeCoursey

1. Defensive Performance, Like Offen-
sive Prowess, Is Divided Into Efficiency
and Power. We currently measure defense
with extremely odd standards., such as
visual memory and measuring plays made and
errors committed, and ignoring all other
balls hit at the fielder. Like batting
statistics, where we measure both
efficiency (BA, OBA) and power (SA), we
need to measure how many of a defensive
player's opportunities he turns into outs
(efficiency) as well as how many outs he
makes out of each opportunity, and how
many bases he gives up (power).

II. Defensive Average Assigns Every
Ball Turned Into An Out, Hit Or Error, and
Every Ball Hit Into Fair Play To The
Fielder Responsible For Playing It. Using
Project Scoresheet data and field dia-
grams, 992 of all balls hit into play in
1988-89 were diagrammed and assigned to a
fielder. Defensive average tells you how
many balls were hit to a fielder's ares,
and what percentage he turned into outs.
It also tells how many of the hits were
singles, doubles and triples, which turns
out to be very informative when evaluating
first and third basemen. Last, DA reveals
how many DP opportunities (ground balls
hit to his area with a player on first and
less than two outs) each infielder had,
and how many DPs he started.

III. Using This Information, It Is
Possible to Construct The Equivalent of
Defensive Datting and Slugging Averages.
By dividing the number of outs made by the
number of ground balls (or in the case of
outfielders, fly balls and line drives)
hit to or past each fielder, you arrive at
that player's Defensive Average, a kind of
defensive batting average. By measuring a
player's frequency of giving up extra base
hits, and his ability to start DPs )for
outfielders, his ability to get assists),
you can measure his power, the way you
would examine a player's extra base hits
or stolen base columns.

It is also possible to then balance a

player's offensive and defensive contribu- N

tions, and compare a player's two most

i




important ways of contributing to w@nning
- baseball games. (An Addendum to this
report doing this is available from By the

,«W; please send SASE--$0.45 postage--
: you are interested),

IV. Refuting the Cround Ball Pallacy.
Gnarled old baseball wisdom to the
contrary, hitting a ground ball through
the infield is a more difficult way to
reach base than hitting a ball into the
air over the infield and into the domain
of the outfielders. My data from 1988 and
1989 demonstrate this dramatically, as
shown in Table 1 below. Remember,
Defensive Average is a calculation of the

number of balls hit into an area that were

turned into outs. (Team-by-team data are
available for an SASE--$0.25--from 5; the
Numbers.) ,

Defensive Average

1988 1989

NL, Infield 0.737 0.723
Outfield 0.619 0.646

AL, Infield 0.744 0.724
Outfield 0.609 0.611

The whole reasoning behind the platoon
theory in hitting is to take advantage of
a difference in batting performance which

may be only 30-50 points. While it's true

that errors are included in the figures
above, these figures show a consistent
difference of 120 points or more. And
since errors put men on base, and would
tend to hurt the infielders' numbers more
thanthe outfielders, we see that the
theory that ground balls are more likely
to out a man on base than a fly or line
drive is fallacious.

V. Some Data From 1989. The following
charts demonstrate some critical facts
about how Defensive Average illuminates
defensive performance. Table 2 presents

data for NL shortstops and Table 3 for AL
third basemen.

4. Ihere are Home-Road Splits in
Defensive Performance, Garry Templeton
finished second among NL shortstops at
turning ground balls into outs, 39 points
above the NL average, but finished 8th at

| /,;?rning grounders into outs on the road.

Table 2

Adj Adjusted DA Rankings
NL 8§ DA Tot Home Road DP
Smith O .716 1 1 3 B
Larkin B .709 2 6 1 13
Elster X .694 3 4 2 11
Uribe J .675 4 3 5 6
Templeton G .670 5 2 8 9
Griffin A .661 6 7 7 7
Thon D .650 7 11 4 10
Owen § .647 8 5 11 5
Dunston § .641 9 10 7 2
Bell J .625 10 8 12 1
Thomas A 615 11 13 10 4
Quniones R .604 12 9 13 14
Ramirez R .591 13 14 9 12
Duncan M 571 14 12 14 3

Among AL third basemen, Kevin Seitgzer's
home adjusted DA was .643, noticeably
better than the AL average of .611. But
on the road, Seitzer turned ground balls
into outs at a ,529 rate, 76 points below
the league average of .605. Jack Howell
played above the league average both at
home and on the road, but still played
better on the road. His road adjusted DA
beat the AL average by 73 points, while
his .645 home DA was 34 points above
average. Carney Lansford's home DA of
.596 far outshines his road average of
550 by quite a margin.

Yarious Skills And Performance Levels--It
Is Not Monolithic. The point here is not
to denigrate the men on either list, but
rather to demonstrate their performance.
That is the purpose of Defensive Average:
to delineate the player's record in those
tasks which he must perform. To borrow a
phrase, you could say that Shawon Dunston
has outstanding defensive power, but needs
to field for a better average. Or you
could say the opposite about Ozzie Smith,
Garry Templeton and Barry Larkin.

With third basemen, we can also see
that each performs his three jobs at the
hot corner with varying degrees of
success. Those three jobs are stopping
hits, stopping doubles, and starting
double plays. Table 3 shows AL third




basemen ranked on the first two of these
tasks.

Table 3

Adj Adjusted DA Rankings
AL 3B DA Tot Home Road DP
Howell J .661 1 4 1 6
Boggs W .654 2 1 2 5
Gruber K .652 3 2 4 14
Martinez E .638 4 3 4
Caetti G .635 S5 6 5 9
Jacoby B .617 6 13 6 11
Buechele S 614 7 7 8 13
Molitor P .615 8 8 7 10
Williams E .601 9 3 1
Martinez C .600 10 10 .2
Presley J .593 11 9 10 12
Schu R .584 12 15 9 16
Worthington .583 13 12 11 7
Seitzer K 581 14 5 13 8
Lansford C 574 15 11 12 15
Strange D 577 16 3
Pagliarulo M .553 17 16 3 17

Paul Molitor clearly pursues a strategy
which cuts off doubles and gives up
singles (35 ground outs per double against
a league average of 18, ranking first in
cutting off doubles, but he ranks only 8th
in cutting off hits). This kind of line-
gurading strategy also appears to affect
his ability to turn the double play (he
ranks 1lth). Wade Boggs, on the other
hand, clearly emphasizes stopping hits
(2nd) and turning double plays (5th) at
the expense of a few extra doubles (llth--
16 ground outs per double). My guess is
that by stopping the extra hits he more
than makes up for the doubles.

C. Errors Don't Matter--Stopping Hits,
Double Plays Does Matter, Kelly Gruber
played every day and made 22 errors.

Steve Buechele, Brook Jacoby, Carney
Lansford and Kevin Seitzer all made fewer
errors. But they also stopped many fewer
hits, and therefore were not playing as
well defensively as was Gruber. Wade
Boggs and Brook Jacoby both made the same
number of errors, 17. Boggs stopped more
hits and turned more DPs, and played
measurably better defense.

V1. The Defensive Avarage Rules of
Baseball Defense. From studying defense
for the past several years, I have

formulated six rules of baseball defense: a

A. Defensive performance. like that of
offense, is made up of efficiency and
power. To measure defensive performance,
we have to measure each, just as we do
with statistical measurements of offense.

B. Using methods to measure the hits
and extra bases a defensive player takes
away, we can add them to his offensive
records for the purpose of direct compar-
ison to other players at that position,
and give each player a total rating which
does not ignore his defensive skills or
cost.

C. Defensive players are not simply
"good" or "bad"” at all of the component
skills which make up defensive play.
Players can have extraordinary adjusted
Defensive Averages and poor defensive
power, or vice versa. We need to measure
this so that we add some literacy to the
debate over defense.

D. A player is more likely to reach
base on a line drive or fly ball hit over
or through the infield than by trying to
hit the ball through the infield on the
ground.

E. Comparison of 1988 and 1989 indi-
cates that there can be notable fluctua-
tions in player's Defensive Average from
year to year, similar to the 20-30-40
point fluctuations commonly seen in
batting averages. Therefore defense jg
Dol a constant in a player's play; good
defenders, like Kelly Gruber and Chris
Sabo, who were All-World in 1988, slumped
in 1989,

F. Like offensive performance, defen-
sive performance seem to have park
effects, as the home-road performance
splits demonstrated.

Pete DeCoursey is the Editor of the

ia Baseball File, wrote the
Phillies chapter of The Scouting

290, was associate editor of John Benson's

Botisserie Baseball Analyst, and contri-
butes a weekly statistical feature for
Jayson Stark's “"Baseball Week in Review"
column in the Philadelphia Inquirer.
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Productive Efficiency and

Structural Change: Free Agency in
Major League Baseball

N\ By Donald A. Coffin and
Daniel G. Sutcliffe

I. Introduction. Pirms operating in
competitive markets face powerful incen-
tives to operate efficiently; failure to
operate efficiently can result in negative
profits and hence failure to survive in
the industry. On the other hand, firms in
non-competitive markets may be able to
operate at lower levels of efficiency,
because they are sheltered from
competition.

Such inefficiency could take any of a
number of forms. For example, firms could
choose to pay higher prices for inputs
than would be required in a competitive
setting. Or, firms could choose to oper-~
ate off their production surfaces, that
is, devote fewer resources to ensuring
technical efficiency.

Of some interest might be a firm which
sells its output in a non-competitive pro-

duct market and hires labor in a monopson-
istic labor market. The profits of this
-ype of firm are sheltered both by its
status as a monopoplist in its product
market and by its status as a monopsonist
in its product market. Such a firm (or
class of firms) will, therefore, be
vulnerable to reductions in market power
either in the product market or in the
labor market. Should the product market
become more competitive, this firm will
find its profits falling and may respond
by attempting to reduce any technical or
allocative inefficiency it has hitherto
allowed itself. Alternatively, should the
labor market become more competitive, this
firm will again find its profits falling
and again may respond by attempting to
reduce inefficiency.

Major league baseball constitutes a set
of firms operating in an imperfectly com-
petitive output market and, prior to free
agency, in a monopsonistic labor market.
As such, a change in the structure of the
labor market in major league baseball will
operate to reduce team profits and engen=-

der pressure to reduce or eliminate inef-
/Q\iciency in operations. The key event we

wish to explore in this paper is the
change in the structure of the labor
market for player talent, the introduction
of free agency for players with six or
more years of experience, which began in
1976.

We will establish that this change in
labor market structure resulted in an
increase in the average level of technical
efficiency in major league baseball. We
will also establish that the factors
related to the level of efficiency with
vhich teams operated differed in the
period before players could become free
agents (1962-1975) and in the later
period.

In a longer version of this paper, we
include sections outlining the economic
theory underlying the construction of our
regression model and an extended discus-
sion of the econometric properties of this
model. If you are interested in seeing
this discussion, please send a 5x7 SASE,
with $0.65 postage, to By Lhe Numbers and
you will receive a copy of the paper in
return.,

II. Estimation. The data for estimat-
ing the production function are drawn from
Total Baseball. We argue in the full
paper that a team's seasonal winning
percentage is a good proxy for an output
which is within a team's control (within
limits). We must now explain our choice
of player performance variables.

It will come as no surprise to readers
of this newsletter that, in order to win a
baseball game, a team must score more runs
than its opponent. Outscoring an opponent
has two components--scoring runs and
preventing runs. This suggests selecting
measures of player performance which are
most closely associated with the desired
offensive and defensive outcomes--scoring
runs and preventing runs respectively. A
second consideration is to keep the
regression from becoming unwieldy. We
decided to select one offensive indicator
and one defensive indicator. A third
consideration was symmetry--we wanted to
use the same indicator for offense and for
defense, if possible.

An anlaysis of the 1984 season indi-
cated that a team's on-base average was
the single offensive indicator most
closely related to runs scored. A similar




analysis indicated that the on-base aver-
age of a team's opponents, against its
pitchers, was the single defensive indica-
tor most closely associated with runs
allowed. If our approach is correct, then
a team's winning percentage should be
closely associated with its on-base aver-
age (OBA) and with its on-base average
allowed (OOBA). We found that this was
correct, as the following regression for
the 1962-1988 period shows (t-statistics
in parentheses; r® = 0.727):

In(WPCT)=-0.631+2.2291n(0BA)~2.1271n(00BA)
(-6.27) (30.84) (-32.11)

It is worth noting that the coefficients
on OBA and OOBA are not significantly
different in absolute value and that the
constant term is not significantly
different from 1n(0.5). This suggests
that a team with identical OBA and OOBA
could be expected to have a WPCT of about
.500, which is convenient.

We estimated a production function
incorporating team-specific production
effects as

In(WPCT; )=a; +b*1n(0BA)+c*1n(00BA) +v; .,

vhere a; are team-specific efficiency
effects and Vip 15 an error term. The
regression results, for the 1962-1975
period and for the 1977-1988 period, are
shown in Table 1.

From the coefficients on the team-
specific dummy-variables, we can construct
an index of relative efficiency (with the
most efficient team--the team with the
largest coefficient--having a relative
efficiency level of 1.00). These
efficiency levels are shown in Table 2 on
the following page. The mean level of
efficiency in the 1962-1975 period was
0.923, with a standard deviation (o) of
0.034. 1In the 1977-1988 period, the mean
level of efficiency rose to 0.959, with a
o of 0.021.

In absolute terms, relative efficiency
increased in the period following the
abolition of the reserve clause. We
tested to see whether the difference was
statisitcally significant, and found that
it was--a t-test for the difference in
means calculated a t = 3,47, which means

the difference in mean efficiency levels
is significantly different from 0 at the
992 confidence level.

N
Table 1: Regression Results:
Frontier Production Function
1962-1975 1977-1988
Variable Coefficient Coefficient
OBA 2,020 2.324
OOBA -2.079 -2.170
ATL -0.826 -0.582
CHINL ~0.745 -0.555
CIN -0.735 -0.557
HOU -0.868 -0.590
LA -0.852 -0.577
MON -0.821 ~0.568
NYNL -0.893 -0.597
PHIL -0.782 ~0.559
PIT -0.756 -0.596
STL -0.791 ~0.572
SD -0.833 -0.593
SF -0.816 -0.582
BAL -0.798 -0.556
BOS -0.790 -0.570 I\
CAL -0.787 -0.591
CHIAL -0.832 ~0.558
CLE -0.782 ~0.634
DET -0.771 -0.577
KC -0.834 -0.548
MIL ~0.842 -0.532
MIN -0.837 ~0.574
NYAL -0.800 -0.562
OAK -0.830 -0.539
SEA ~-0.602
TEX -0.856 ~-0.597
TOR -0.556
R® (Adj) 0.736 0.740
F 35.19 33.75
All coefficients are significant at the
12 level. 1In each regression, the "most
efficient” team--the arithmetically
largest coefficient--is shown in
boldface.

We also tested to see whether there

were significant differences in efficiency ™\

levels between teams within each time

—’




period.

We did this by re-estimating our

regression, excluding the dummy variable

for the most efficient team, but including
, If the coefficients on
'™ remaining team.variables are signifi-
cantly different from 0, then these teams
were significantly less efficient than the

4 constant term.

most efficient team.

Table 2: Relative Efficiency Levels
Relative Efficiency Level
Team 1962-1975 1977-1988
ATL 0.91 3% 0.951
CHINL 0.896%%* 0.977
CIN 1.000 0.975
HOU 0.875%%* 0.944%*
LA 0.890%%* 0.956
MON 0.918%% 0.965
NYNL 0.854%%* 0.937x
PHIL 0.954 0.973
PIT 0.979 0.938%
STL 0.946* 0.961
SD 0.907%* 0.94] %
SF 0.922%%* 0.955
BAL 0.939%* 0.976
7 \BOS 0.946% 0.962
CAL 0.949 0.943%
CHIAL 0.908%#* 0.974
CLE 0.954 0.903 %%
DET 0.965 0.956
KC 0.906 % 0.984
MIL 0.899%%* 1.000
MIN 0.903 %% 0.959
NYAL 0.937% 0.970
OAK 0.909%*= 0.993
SEA 0.932%x
TEX 0.886%¥* 0.937%*
TOR 0.976
Mean 0.923 0.959
St. Dev. 0.034 0.021
wrEfficiency level is significantly
different from the most efficient team
at the 12 level.
**Efficiency level is significantly
different from the most efficient team
at the 5% level.
*Efficiency level is significantly
/J different from the most efficient team

Nat the 102 level,

Note that in the 1962-1975 period, only
five of 23 teams were NOT significantly
less efficient than Cincinnati (Philadel-
phia, Pittsburgh, California, Cleveland--
yes, Cleveland--, and Detroit). However,
in the 1977-1988 period, only eight of 25
teams WERE significantly less efficient
than Milwaukee. Not only was the average
efficiency level higher, the differences
between teams became less prevalent.

We should add a word about the meaning
of efficiency here. What is being picked
up by the team-specific variables is a
contribution to winning percentage which
is team-specific and not captured by the
performance variables (OBA and OOBA). To
put this another way, in the 1962-1975
period, Cincinnati, Philadelphia, Pitts-
burgh, California, Cleveland, and Detroit
had consistently higher winning percen-
tages than could be accounted for by their
performance levels alone (and the Mets,
for example, were worse than could be
accounted for by performance alone). Note
that this is not a measure of which teams
had the highest winning percentages, but
rather a measure of which teams used best
the performances that their players
produced.

I1I. Explaining the Changes in Effici-
ency Levels. The rise in efficiency
levels from the 1962-1975 period to the
1977-1988 period need not be a result of
free agency; other factors are also
possible. For example, the addition of
expansion trams could depress efficiency
by adding team mapagement which is less
capable than the existing managements. If
this were true, then the largest effect of
efficiency should be found in the initial
period of expansion, since it was probably
less well anticipated and therefore less
well prepared for.

When we examined this hypothesis,
however, we found that efficiency fell
from an average of 0.930 in the 1962-1968
period to 0.911 in the 1969-197S period,
then rising to 0.954 in the 1977-1988
period. The difference between the 1962-
1968 and 1969-1975 efficiency levels was
not significant (t = 0.97).

A second possibility was the introduc-
tion of salary arbitration in 1974. Evi-
dence on changes in average salary levels,
however, suggests that they did not begin




to rise significantly, and thus did not developed skills. However, this effect

put significant pressure on team profits, should be strongest for the first set of
until after free agency occurred. expansion teams. We examined the

We concluded, therefore, that a change relationship between expansion vaves (EXI,/‘\
in the mid-1970s, plausibly connected with EX2, EX3) and our measure of eff1ency.
free agency, led teams to change their Finally, if team efficiency is affgcted
managerial behavior so as to reduce the by free agency, then the extent to which a
extent of inefficiency. We then turned to team participated in free-agent player
a detailed analysis of efficiency levels transactions should have some effect on
in the two periods. efficiency as well. We counted the number

IV. Explaining Efficiency Levels. We of players signed from and lost to'ftee
investigated a number of measurable team agency and explored the relationship
characteristics to see which of these are between these variables (SIGN, LOST) and
related to team efficiency levels. our measure of efficiency.

We note that more efficient teams have We present simple correlations between
higher winning percentages than can be these variables and efficiency in Table 3.

explained solely by their performance

levels. However, this may be related to Table 3: Correlations
some other factor which varies betweeén vith.Efficiency
teams, which affects efficiency, and which
we did not measure. If there is a strong Correlation With
relationship between efficiency levels and Efficiency in
winning percentage, then this is a real Variable 1962-75 1977-88
possibility. So we examined the
relationship between winning percentage WPCT 0.522% 0.414%
(WPCT) and our measure of efficiency. CVWPCT —0.451% 0.088
Teams experiencing greater yariability MCRS -0.005 0.188
in winning percentage from year to year BEOFRE 0.208 0.259
may be experiencing performance variations DURING _0'192 0.071 N
or they may have less consistent, and PLAYERS _0'337 -0.246 -
perhaps lower, levels of efficiency. We EX1 -0.426* -0.381*
therefore examined the relationship EX?2 _0'207 0:274
between variability in winning percentage EX3 : -0.069
(measured by the coefficient of variation- EA -0‘008
~CVWPCT--in team winning percentage) and SICN -0.176
our measure of efficiency. LOST : 0.208
Gerald Scully has arguned (in The .
Business of Major League Baseball) that *Significant at the 5 level.
managers experience reduced efficiency

when they change teams, as they have to
become familiar with a new set of players. Teams with higher winning percentages
We measured managerial turnover, both in are more efficient, so there may be an
total (MGRS), before a season (BEFORE), excluded variable problem. 1In 1962-75,
and during a season (DURING) and examined teams with more variation in winning
the relationship between this and our percentages were less efficient, as were
measure of efficiency. Extending this to the first expansion teams. In the second
teams, one can argue that teams with a period, the first expansion teams
high degree of player turnover may operate continued to be less efficient.
less efficiently. We therefore measured Correlations between player turnover
player turnover and examined the : and efficiency were almost significant
relationship between turnover (PLAYER) and (and negative), so more player turnover
our measure of efficiency. does appear to have a deleterious effect

We expect expansion teams to be less on efficiency. A regression analysis of
efficient, as they may have to employ efficiency levels in the 1977-1988 period ™\
managerial personnel with less-well- suggests that teams that signed more free
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agents were significantly less efficient,

while teams that lost more free agents
were significantly more efficient,

Y. Conclusions., We believe we have

7Nstablished that relative efficiency

levels increased in the mid-1970s and that
this increase is related to the creation
of a free agent labor market for player
talent. We have further established that
participation in this free agent labor
market did have an effect on team :
efficiency levels. We have not explored
the specific managerial responses of teams
to free agency, and that remains a
promising area of research. We note,
however, that managerial turnover
increased in the 1977-1988 period (in
total, before, and during seasons).
Player turnover also increased. Neither
of these increases was statistically
significant, however. We have no
observations on player development
activities or on front-office marketing
and promotional activities, both of which
may have changed in response to free
agency. Much work remains to be done on
these factors.

Donald A. Coffin is Associate Profeésor of
N

‘conomics at Indiana University Northwest;
Daniel G. Sutcliffe is an actuary for

Country Companies Insurance Companies in
Normal, Illinois.
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Batting Order Analysis
Using Markov Chain Models

By Mark D. Pankin

Scoring runs for a baseball team
involves "stringing together” events for
which the long-term, or "expected” proba-
bilities may be observable. This makes
use of Markov chain models highly suitable
for analyzing the effects of a particular
batting order, or of changes in that
batting order, on the numberof runs a team
can be expected to score.

A Markov chin model is based on transi-
tion probabilities in specific runner-out
situations and creates a matrix of such
probabilities. For example, if, for the
the lead-off hitter in s game there are
ive possibilities (make an out, reach
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first, reach second, reach third, reach
home), and if we know the probability for
each of these five events, then the second
hitter faces each of these possibilities
with a known probability, GCiven what the
second hitter can do (and there are more
than five possibilities here), we then
have a matrix of probabilities following
two hitters, as shown in Table 1 at the
top of the following column.

The third hitter then faces all of the
sombinations of the events for hitters one
and two, again with a known set of
probabilities. This permits us to create
8 probability matrix for hitter 3, hitter
4, and so on.

Table 1

Hitter Two Hitter One Events
Events 1 2 3 4 5

! P11 P12 P13 P14 Pis

2 P21 P22 P23 P24 Pys

3 P31 P32 P33 P34 P3s

4 Pal P42 P43 P4y Pus

3 Psy Ps2 Ps3 Pss Pss

6 Pe1 Pe2 Pg3 Pes Pgs

7 P71 P72 P33 P34 Pys

Once all of the transition matrices
have been created, one can then "run" the
model. The model "re-sets” every time
three “"outs” have been made (so that the
next hitter then becomes hitter one), and
then the transitions re-commence. This
model can then calculate expected (long-
run average) runs per inning and runs per
game, based on the transition probability
matrices and on the lineup used. Note
that the transition matrices will vary
depending on the lineup used, since
different players have different
performance probabilities in different
situations.

The model can be used to test theories
about lineup construction. It can also be
used to gain insights, such as where in




the lineup to bat certain players, or how
to maximize the runs scored in the first
inning, or to find the "best” lineup for a
given team.

This study reports on research
undertaken on lineup construction for the
1986 Boston Red Sox. The use of an AL
team simplifies the analysis, because of
the presence of the designated hitter.
Boston simplifies the analysis because
John McNamara fielded virtually a set
lineup all year and because it was a very
slow team, unlikely to steal a base.
Finally, McNamara made one significant
lineup switch during the year, switching
Wade Boggs from lead-off to second in the
order and Marty Barrett from second to
first,

The study used player data for each
runner/out situation from Project
Scoresheet and Elias scoring position
statistics for less common situations.
Team averages were used for stolen bases,
caught stealing, wild pitches, passed
balls, and other unusual situations.
Sacrifice bunts attempted and successful
were excluded. .

McNamara used an extremely stable
lineup at eight positions, and used three
players at shortstop (whose statistics
were combined to create a composite
shortstop). He also made only one
significant change in his lineup order,
switching Wade Boggs from second to
leadoff on August 6 (and moving Marty
Barrett from leadoff to second).

In addition to examining McNamara's
lineup choices, the study presents two
other explicit lineups, based on a theory
of lineup construction in the 1988 Elias
Baseball Analyst. This theory proposes
five guidelines to be used in constructing
a lineup:

1) Cluster players in the lineup by
slugging average and home run
percentage.

2) Spread out the players with the
highest batting averages.

3) Lead off with the player with the
highest OBA.

4) Bat the best contact hitter second.

4) Bat the hitter with the best home
run percentage lower than fourth.

This allows us to examine explicitly
four lineups, as shown in Table 2.

Table 2 .

McNamara's Two Two Based on Elias
Lineup 1 Lineup 2 Lineup 3 Lineup 4 a

Barrett  Boggs Boggs Boggs
Boggs Barrett Buckner  Buckner
Buckner Buckner Evans Evans
Rice Rice Rice ~ Rice
Baylor Baylor Baylor Baylor
Evans Evans Gedman Barrett
Armas Armas Barrett Gedman
Gedman Gedman Armas Armas
SS §s sS SS

Applying the Markov chain model to
these four lineups yields the predicted
inning-by-inning and average per game runs
scored shown in Table 3. While lineup
construction does make some difference,
the differences are not terribly large.
The largest difference (between lineup 2
and lineup 4) is 0.133 runs per game
(2.4%), or about 21 runs per year--enough
to win about two more games.

Table 3

Lineup
Inning 1 2 3 4

714 .655 .760 .770
«575 .583 .556 .561
.615 .618  .639 .637
.601 .598 .589 .588
.600 . .604 .612 .612
.606 .603 .603 .602
.399  .602 .606 .605
.605 .604 .606 .606
.600 .602 .605 .604

WOO~NOWMEWN -~

Total 5.519 5.473 5.576 5.586

Lineups 1 and 2 are actual lineups used
by the BoSox, so we know how well they
actually did with those--they scored 4.55
runs per game with lineup 1 (before August
6) and 5.64 per game with lineup 2. How-
ever, Buckner, Evans, Boggs, and Gedman
all hit much better in August and Septem-
ber than they had earlier, while the other
batters hit about the same. When 44X of
your lineup starts hitting better and no
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one noticeably tails off, you should score 5) Buckner should bat sixth or lower.

. more runs., What we do not know is whether 6) Rice can bat almost anywhere. in the
~ the improvement was a result of the change order. '
-Jn the lineup, although it seems unlikely 7) Barrett should bat leadoff or fifth,
fﬁ\ha: a small lineup change would lead to 8) Gedman should probably bat sixth or
such a large change in offensive produc- seventh,
tion. 9) Baylor is hard to place, if Evans
It is also possible to create lineups bats third (but based on all of
randomly and examine run scoring to find this, seventh or eighth looks about
each player's best lineup position, to right). .
determine runs/inning profiles of the The best random (and overall) lineup
highest scoring lineups, and to get ideas found in the search was: Rice, SS, Evans,
useful for building good lineups. With Boggs, Armas, Barrett, Gedman, Baylor,
nine players and nine positions, there are Buckner. It scored 5.7 runs per game.
40,320 possible lineups. Nine lineup The worst random lineup found was: SS,
groups were created~-600 for each player Gedman, Armas, Buckner, Evans, Barrett,
leading off. Table 4 shows the percentage Rice, Boggs, Baylor. It scored 5.19 runs
of the maximal lineups with each player in per game.

each position. An analysis of runs scored per inning

in the 5400 different lineups generated
was undertaken. Almost all of the differ-

ences in runs per game comes from differ-
Table & ences in the first inning; lower-scoring
lineups tended to score more runs in the
. - second inning than did higher scoring
Player fat;zng Ozde; P:SI;IOE 9 lineups. About 2% of the lineups scored
more than 5.6 runs per game (the top
group), while 22X of the lineups scored
/,\\ g:;;:tt ;3 2; ? ;? 13 12 12 2 13 between 5.45 ang 5.5 runs per game.
Buckner 4 811 5 11 1515 17 16 Hhat-conclusxons can we reach? Four
— Rice 11 11 910 14 12 13 11 12 conclus1on§ seem to come out of the study:
Baylor 12 620 9 712 12 11 11 1) Batting order differences are
Evans 8 149 9 4 910 9 4 important. The range from best to
Armas 7 4 1212211 81313 worst was about 0.5 runs per game,‘
Gedman 8 12 6 12 10 14 15 12 13 or 80 runs per season, enough to win
ss 727 0 5 7101115 18 about an additional eight games.
McNamara's lineups were decent, but

the lineups based on the Elias
suggestions were about 10 runs per
year better (one win), while the
overall best lineup found was about
29 runs per season (three wins)

The table is to be interpreted as
follows: In 162 of the maximal lineups,
Marty Barrett batted first; in 5% of the
maximal lineups, he batted second; and so

on (each row should add to 1002, except better.
for rounding error). The idea about 2) The Elias suggestions seem to be
lineup construction is, then, to try to productive.

bat each hitter in the position in which 3)
he hits in the largest percentage of the
maximal lineups. This leads to the
following suggestions:
1) Evans should bat third.
2) Boggs can bat leadoff, second, or
fourth.
3) The composite shortstop makes a
remarkably good #2 hitter.
7N 4) Armas should bat fourth or fifth.

The best lineups seem to maximize
run scoring in the first inning. 1In
several places, Bill James has
raised the issue as to whether maxi-
mizing scoring in the first inning
is productive; these results seem to
suggest it is.

4) Markov chain analysis is a useful
tool. Although it makes the assump-
tion that the transition probabili-
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ties are know a priori, we do have
substantial data about player per-
formance in specific situations
which we can use. It is also s much
faster method than most simulation
methods.

Some limitations of the current results
also important. First, the results
based on the analysis of a single team
a single year. Testing these results

for more teams and more years will add to

our knowledge. Second, there is a ques-
tion whether the Markov model can be

adapted to a team with a Ricky Henderson ,

or to a team which employes base stealing

and certain fast runners as a significant
part of its offense. If it cannot, simu-
lation methods would seem to be the only
alternative. The author's feeling is that
the Markov model can be adapted; he
suggests modifying the transition
probability matrices for given players
based on the lineups being analyzed. The
idea is to determine who is likely to be
on base (or more precisely the
probabilities of specific runners being on
in specific situations), and then adjust
the transition probabilities appropriately
based on available data. This method
requires additional steps before analyzing
the lineups, but does not significantly
increase the computational requirements.

Since the primary goal of lineup analysis

is to compare lineups, these adjustments

do not have to be precise.

are
are
for
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Third, there is a problem with state-
dependent performance. The author writes
"I can almost hear baseball 'insiders'
saying things like 'everyone knows Bvans
can't hit in the third spot,’ or 'if you
don’'t have someone like Baylor behind
Rice, he'll never get a pitch to hit.' I
have two answers to that. First, if you
think you know all the answers, you'll
never learn anything and never do any
better. (Some of the decisions made by
McNamara and Dave Johnson in game 6 of the
1986 World Series make you wonder if they
know anything at all; and responses such
as sticking with the players who got me
here--even if they can't bend over to
field a ground ball-~reinforce that
impression.) Second, the assumptions
underlying the model can be changed, and
we can see if the results change."

Mark Pankin works in operations research
This report on his presentation was
prepared by the editor of By the Numbers:
he believes it is an accurate account, but
welcomes corrections or additions.




