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Filiding Better Batting Orders
By Mark D. Pankin

Given the nine starting players, in what order
should they bat? Traditional guidelines such as “the
leadoff man should be a good base stealer”, .
"number two should be a contact hitter who can hit
behind the runner”, "bat your best hitter third"
abound. Due to computational complexities, there
have been few studies that analyze the batting order
question from a quantitative viewpoint. This article
discusses what [ believe is the most comprehensive
mathematical and statistical approach to lineup
determination. The models and the methods used to
develop them are described, and some resulting
principles of batting order construction are pre-
sented. Finally, the models are applied to the 1991
AL division winners and compared to the batting
orders employed by the teams’ managers.

The material presented here is an expanded ver-
sion of the talk T gave at SABR XXI in New York
during July, 1991. I have written several pieces on
using Markov models applied to baseball; readers
wanting more information may write to me [1018
N. Cleveland St., Arlington, VA 22201}

The study utilizes two mathematical/statistical
models: 1) a Markov process model that calculates
the long-term average (often called expected) runs
per game that a given lineup will score, and 2) a
statistically derived model that quantitatively evalu-
ates the suitability of each of the nine players in
each of the nine batting order positions. Data for
the second model were generated by numerous runs
of the Markov model. Hence, we see that the
Markov model underlies the entire analysis.

The Markov Process Model. The Markov
process model is based on the probabilities of
moving from one runners and outs situation to
another, possibly the same, situation. These proba-
bilities, which depend on who is batting, are called
transition probabilities. For example, one such tran-
sition is from no one on and no outs to a runner on
first and no outs; and the transition probability is
that of a single, walk, hit batsman, safe at first on
an error, catcher interference, or striking out and
reaching first on a wild pitch or passed ball. The
Markov model employs matrix algebra to perform
the complex calculations. However, once all the
requisite probabilities have been determined, the
matrix formulation enables the remaining calcula-
tions to be carried out without much difficulty.

It is important to note that assumptions made in
determining the transition probabilities have an
enormous influence on the the batting order results />
presented later. The goal is to choose a realistic set
of assumptions, but, as always, some simplifying
assumptions are quite helpful. Moreover, some of
the assumptions are open to alternatives, the partic-
ular ones employed being a matter of judgement or
study objectives. The key assumptions for the cur-
rent analysis are:

1) Players bat the same in all situations. For

this study, each player’s 1990 full season
data was used to determine how he would
bat.

2) All base advancement, outs on the bases
(including double plays), wild pitches,
passed balls, balks, etc. occur according to
major league average probabilities.

3) Stolen base attempts are permitted with a

runner on first only.

4) Only pitchers attempt sacrifice bunts.

5) Overall 1990 pitcher batting is used for all

pitchers.

6) Small adjustments to hit and walk frequen-

cies are made in certain situations. In par-
ticular, there are more walks and fewer hits
when there are runners on base and first

base is not occupied. ™

Data for 2) and 6) are derived from combined )
AL and NL data for the 1986 season. I used this
season because I had extracted the needed data from
the Project Scoresheet database for a prior study.
Since this is a time consuming operation, 1 decided
not to repeat it using 1990 data. Comparable data
for several seasons would be better, and I may do
the computer work on the entire Project Scoresheet
database covering 1984-91. However, I doubt that
the essential results and lineup optimization models .
derived would be affected very much.

The first assumption is the most critical and
most controversial. One of its consequences is that
the differences in expected runs between batting
orders tend to be relatively small, A previous, less
extensive, study that incorporated situational per-
formance assumptions (e.g. certain players hit bet-
ter with runners on) showed much larger differ-
ences in expected scoring. I plan to explore various
alternative assumptions about performance levels in
future batting order studies.

Base advancement on hits certainly is not uni-
form since it depends on runner speed and where
the particular batter tends to get his hits (e.g. the
percentage of singles to left, center, or right). ~
However, I did not have the data needed to '
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incorporate such effects. Data availability also pre-
vented batter specific double play modeling.

The stolen base try restriction does not have a
large effect because over 80% of steal attempts
occur with a runner on first only. The restriction to
this case greatly simplifies the computations and is
not likely to affect comparisons between batting
orders. Sacrifice bunt tries are not included for
non-pitchers because they are game situation spe-
cific and reduce overall scoring, contrary to the
study objective of finding the highest scoring line-
ups.

b Data for the Statistical Models. The Markov
model was used for two primary purposes. One
purpose is to evaluate a specific batting order by
calculating its expected runs per game. In this way,
alternative lineups can be compared. The second
purpose is the generation of data for use in the sta-
tistical models. For each of the 26 major league
teams in 1990, 200 "batting rotations” were chosen
at random. A batting rotation consists in specifying
the order in which the players will bat by estab-
lishing who follows whom, but a rotation does not
become a lineup or batting order until the leadoff
hitter in the first inning is specified. Each batting
rotation corresponds to nine lineups, one for each
possible leadoff batter. The Markov calcuiations

. have the property that the computations needed for

one lineup are also sufficient for the other eight
lineups corresponding to the same batting rotation.
There is nothing special about the choice of 200; it
was a function of the computing power available to
me and the amount of time I could spend on this
phase of the study. More, as usually 1s the case
for statistical analyses, would have been better.

Thus, the Markov model computed the expected
runs per game for 1800 "semi-randomly” (a made
up concept since only the batting rotations are cho-
sen at random) generated batting orders incorporat-
ing the nine most frequent players, one for each
position. One property of the 1800 lineups is that
gach of the nine players hits in each batting position
exactly 200 times.

The next step was to select the best lineups for
each team from the 1800 tested. I used two defini-
tions of best. The first is obvious: select the ones
with the highest expected runs per game. The sec-
ond definition is more subtle. Each batting rotation
will have one lineup that scores the best, and this
lineup may or may not be one of the highest scoring
lineups out of the 1800. Call the highest scoring
lineup for each rotation, a maximal lineup. The
reason a maximal lineup, which may not be a par-
ticularly high scoring lineup overall, is of interest is

that it can reveal advantages to batting certain play-
ers in certain positions although the overall scoring
is held down by the batting positions of other play-
ers. Since there were 200 maximal lineups, one for
each rotation, I decided to use them and the 200
highest scoring lineups as the basis for the statistical
analysis. I did not determine how many of the
maximal lineups were also in the 200 highest scor-
ing.
Within each set of 200 best lineups, I computed
how often each player hit in each batting position.
For example, Wade Boggs leads off in 21% of
Boston’s highest scoring lineups. (This value, the
highest on the team, means that Boggs is a good
first hitter since the average is 100%/9 = 11.1%)
In this way, each player has a rating for his suit-
ability for each batting order position.

For each player, [ computed scores in 21 offen-
stve measures relative to the group of nine starting
players on his team. The offensive measures are
batting average; on base average; slugging average;
slugging average modified by counting walks as
singles and SF as AB (which is the relationship of
on base percentage to batting average); exira base
average [=SA-BA, also called isolated power];
runs created per game,; frequency per plate
appearance of each type of hit, walks (including hit
by pitch), and strikeouts; relative frequency of each
type of hit (i.e. the percentage of players hits that
are singles, doubles, etc.); percentage of plate
appearances that are not walks or strikeouts (which
measures putting the ball in play); secondary
average [=(TB-H+BB+SB-CS)/AB, a Bill James
idea]; run element ratio [=(BB+SB)/(TB-H),
another Bill James ideal; steal attempt frequency
[=(SB+CS)/{1B+BB)}; and stolen base success
percentage {=SB/(SB+CS)]. No claim is made
that the set of measures chosen is complete or
perfect, just that it covers all the significant aspects
of offensive performance.

I used two measures of player performance
relative to the team: 1) percentage above or below
the team mean in the category, and 2) the z-score,
which is the number of standard deviations above or
below the mean. By using z-scores, I am not
claiming any of the these distributions is normal
(given that there are only nine values for a team in
each offensive category, the distributions are almost
certainly not even approximately normal); I am just
using z-scores as a measure of relative
performance. _

Regression Analysis._In the next phase, I
applied regression analysis using the players’
batting position ratings (e.g. Wade Boggs 21 %
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batting first) as the dependent variable and their
relative scores for the various offensive measures as
the candidate independent variables. For each
batting position there are 236 data points,-one for
each of the nine players on the 26 teams-used in the
regression estimates. Because there were two
measures for batting position ratings-one based on
the highest scoring lineups and one based on the
maximal lineups-and two measures of relative
offensive performance-percentages above or below
the team mean and z-scores, there are four possible
categories of models that can be derived. I tested
all four, as described below, decided on the one
that seemed to yield the models with the best
statistical properties, and focused on that one. The
best combination from the first round of testing was
highest scoring rather than maximal lineups as the
basis of the dependent variable and z-scores for the
independent variables.

To do the regressions, I used the stepwise
regression procedure in the SHAZAM statistical
package with a 10% significance level required for
variables to enter or leave the equations. One
equation is estimated for each batting order
position, and the estimates are done independently.
Since the nine batting position values for a given
player must add to 100%, I experimented with
some joint estimation techniques. However, they
did not yield significantly different models from the
independent estimates, so I used the independent
estimates throughout this study. After performing
stepwise regressions for each of the four categories
of models described in the previous paragraph, I
restricted further investigation to the highest
scoring/z-scores category.

For this first set of regressions for highest
scoring/z-scores models, the r? values ranges from a
high of 0.914 (#9 position) to a low of 0.580 (#6).
It is no surprise that the best fit is obtained for the
#9 position because of the inclusion of NL teams
with pitchers that bat. The number of independent
variables in these equations range from a low of 4
(#2,#4) to 12 (#9). Overall, I judged this to be
good and workable set of models. Three candidate
variables-home runs per plate appearance, run
element ratio, and stolen base success percentage
{which is highly correlated with steal attempt
frequency)-did not enter any of the nine model
equations. The variables most frequently in the
equations were runs created per game (in 7
equations, all but #4 and #5) and modified slugging
average including walks (in 6, all but #2, #5, #7).

The offensive performance measures that are the
basis of the independent variables are not truly

independent, and several measure similar player
performance characteristics. Since the models
usually included several such variables, often with /"
opposite signs, I decided to see if a smaller set
independent variables could yield models with
values almost as high, but which lend themselves to
more sensible interpretations. After examining the
equations and the correlation matrix of the
candidate independent variables, I restricted the
candidates to the following nine: on base average
(OBA), slugging average (SA), extra base average
(EBA), BB/PA, K/PA, 1B/H, HR/H, ball in play
percentage (INPLAY), steal attempt frequency
(SBTRY).

The resulting set of models had r2 values from
0.885 (#9) down to 0.607 (#5) and 0.434 (#6).
With the exception of #6, the decline in r? is not a
major concern. In order to improve the model for
the sixth position, I added RC/G to set of candidate
independent variables for that equation only, which
improved its r2 to 0.557. The number of
independent variables ranges from 3 (#3,#4,#7) to 7
(#9). Each candidate variable appeared in at least
one of the model equations. The table that follows
summarizes the models; a plus sign before the
variable means high scores are best for the
particular batting order position, and a minus sign
indicates the opposite. There are numerical values, /™
the model equation parameters, which are not o
shown, associated with each variable in the table.
These values determine the relative importance of
the variables.

I also did some regression analyses using each
of the leagues separately because I wanted to see if
the DH rule affected the models. In general, the
statistical properties-goodness of fit and significance
levels of the parameters-were poorer for the models
based on the separate leagues. Also, I was not able
to interpret the models in a way that could answer
the DH question. I suspect that I need more and
better data to do this analysis. More in that teams
from seasons other than 1990 should be included,
and better in that more than 200 batting rotations
should be calculated to determine the player/batting
position scores. Additional candidate independent
variables should also be considered. Due to time
constraints, I did not pursue these models further,
but this is a topic worth further investigation if for
no other reason than the feeling of some AL
managers that the number nine hitter should
considered as a second leadoff hitter,




Table 1; Variables in Order of Importance

Batting

Order Order of Importance

Pos. 1 2 3 4 5 6
1 +OBA  +BB/PA -INPLAY -HR/H  -SBTRY

2 +SLUG +0BA -EBA +BB/PA -INPLY

3 +SLUG +BB/PA +INPLY

4 +SLUG +OBA -HR/H

5 +SLUG -HRVH +INPLY +SBTRY

6 RC/G +SLUG +INPLY +0BA +K/PA +5BTRY
7 -0BA +INPLY +SBTRY

8 -SLUG -OBA -BB/PA +HR/H +INPLY

9+ JINPLY -K/PA -SLUG -OBA -BB/PA +1BH

#_SBTRY is significant, and the Tth most impertant characteristic for
ninth-place hitters.

Generating Lineups Based on the Batting
Position Models. Once the batting position model
equations are in hand, for a given team, we can
compute a value in each of the nine batting order
positions for each player. These values can be
positive, meaning the player is better than average
for the particular lineup position, or negative,
which has the opposite meaning. These scores
serve to rank the nine players for each lineup
position and also to identify the best position for
each player. The next step is using those values to
find one or more high scoring lineups. Things
would be easy if the best position for each player
was the highest rating for that position on the entire
team. This occurs, for example if Wade Boggs best
spot is leadoff and the highest scoring leadotf man
on the Red Sox is Boggs; Jody Reed’s best spot is
#2 and the Sox’ best #2 is Reed; etc. However,
such is rarely the case. Due to the nature of the
models, it is common for the player with the best
leadoff score to also have the best #2 score and a
high #3 score. Also, the scores on the ends of the
lineup (#1, #2, #8, #9) tend to be more extreme,
both on the high and low sides, than the scores in
the middle. This reflects the models’ emphasis on
the importance of having high on base average
iﬁtters at the top of the order, which is discussed
ater.

What we need is a method of assigning players
to lineup positions so that total model scores from
the assignments is high. This is a well known

Operations Research topic known as an assignment
problem. Fortunately, this type of problem can be
solved used several methods, some of which are
easy to implement on computers and run quickly. I
chose an algorithm that not only finds the best
possible assignment, but also finds the top n
assignments, where n can be specified. For the
purposes of this study, I set n equal to five. For
each set of batting positions models-one based on
the full set of independent variables and one based
on the reduced set-1 found the five highest
assignments for a team, which were always quite
close in total batting position values, These lineups
were fed into the Markov model to find the
expected runs per game. The lineup with the
highest expected scoring was usually one of the top
three solutions to the assignment problem, but the
best solution did not seem to have an advantage
over the next two. In some cases, a comparison of
the expected scoring and the batting order
differences among lineups led me to formulate a
lineup with even better expected runs per game that
was not in the five solutions to the assignment
problem.

For each of the 1990 major league teams, I
compared the expected runs of the best lineups
found using the models described in the table with
the best found using the models based on the full set
of candidate independent variables. For 3 AL and
6 NL teams, the full variable models had a slight
advantage (about 1-2 runs a season), and for 4 AL
and 2 NL teams, the reduced variable set models
had a similar advantage. For the rest of the teams,
the two sets of models were virtually the same.
Because the smaller variable set models are easier to
comprehend, the discussion in the next section is
based on those models.

Interpreting the Models. Due to the nature of
the regression process, it can be misleading to draw
conclusions about individual variables without
considering the context provided by the entire set of
variables. One example is the -SBTRY for the
leadoff position. This is the fifth most important
variable (its weight is about 10% that of OBA,
which is by far and away the most important
characteristic of a good leadoff hitter). Even so,
does it mean that other things being equal, which
they never are, it is better to have a leadoff hitter
who doesn’t try to steal? It might, but it also may
just be the regression distinguishing certain slow
effective leadoff hitters based on the Markov
model, Wade Boggs for example. Additional
statistical analysis, which I have not yet gotten to,



could determine if one or two specific players are
the cause of the -SBTRY.

The less important explanatory variables often

play a role of emphasizing or modifying the more
important ones. For example, the -INPLAY in the
#1 and #2 positions serves to emphasize BB/PA. If
I wanted to try to find the best set of variables for
each position, I would try to build these two models
without INPLAY. To illustrate the idea of
modification, the -EBA in #2 balances the +SLUG
and +OBA. Often players with high OBA have
high BA and above average SLUG since slugging
average incorporates batting average. The negative
EBA in effect puts more weight on the OBA and
less weight on power. A more interesting instance
is the -HR/H in the model for #4. Does this mean
that the clean up hitter shouldn’t hit homers? No,
what it means is that among players with high
slugging averages, it is better to have one who does
not get his slugging average mainly from home
runs-a Dave Kingman-but instead has a good batting
average and hits a fair number of doubles-an Eddie
Murray.

The model equations, which are not shown, can
be interpreted to characterize the desirable abilities
for each batting order position:

1) Getting on base is everything. To much
lesser extent, home run hitters should not
lead off. Stolen base ability is irrelevant.

2) Similar to the leadoff hitter, but not quite as
crucial to get on base; some power is also
desirable.

3) Should have fair power, be able to draw
walks, and not strike out much.

4) Highest slugging average; also has a good
on base percentage and is not necessarily the
best home run hitter.

5) Good power; secondarily puts ball in play
(i.e. does not walk or strike out a lot).

6) Hardest spot to characterize and probably
least critical. Probably want to use player
who doesn’t fit well in other positions. Base
stealing ability is a small plus.

7-9) Decreasing overall abilities as hitters as
characterized by on base percentage and
measures of power hitting.

One clear result from this and prior studies is
the importance of having the right batters at the top
of the order. This follows from the finding that
most of the difference in expected runs between
high and low scoring lineups using the same players
occurs in the first inning. In particular, the leadoff
batter must have a high on base percentage. Also,
the second hitter must be good. The practice of

leading off a fast runner who can steal bases, but
doesn’t get on base much, and putting a weak hitter
"with good bat control who can bunt or hit behind
the runner" second is a perfect prescription for a
lower scoring batting order.

Applying the Models. To see them in action,
consider what these models say about the 1991
ALCS teams, Toronto and Minnesota. Batter
performance is based on full season 1991 data, and
no righty-lefty splits are used. The lineups used by
the teams were against right handed starting
pitchers. Before Joe Carter was hurt in game three,
Cito Gaston used the batting order:

1) D. White, 2) R. Alomar, 3) I. Carter, 4) J.
Olerud, 5) K. Gruber, 6) C. Maldonado, 7) L.
Mulliniks, 8} P. Borders, 9) M. Lee.

The Markov model expected runs per game for
this lineup is 4.739. This value is about 0.5 higher
than Toronto’s 1991 actual of 4.222 runs per game.
That the Markov values are higher than the actuals -
is to be expected for several reasons. The most
important are: 1) the players listed are generally
better than the substitutes who play for various
reasons; 2) sacrifice bunt attempts, which decrease
overall scoring, are not included in the Markov
model; 3) relief pitchers brought in with men on
base or to face particular hitters can reduce late

inning scoring; and 4) a good team usually loses
more innings in games won at home than it gains in .

extra inning games, but the Markov value is based
on nine complete innings per game.

The highest scoring lineup found by the models
is: ‘

1) Mulliniks, 2) Olerud, 3) Maldonado, 4)
White, 5) Alomar, 6) Carter, 7) Gruber, 8)
Borders, $) Lee

The Markov value for the above lineup is 4.795
runs per game, which is about 9 runs per 162 game
season more than Gaston’s, a difference that should
be worth one extra win. (Keep in mind that
differences in expected runs between lineups are
small due to the assumption that each player’s
batting is the same in all situations.)

Mulliniks shouid lead off because he has an on-
base average (OBA) of .364, the highest in this
group, and little power. White, in contrast, has an
OBA of .342 and the second best slugging average
(.455, Carter’s is .503), so he should not lead off
despite his stolen base ability. The major surprise
is that Carter bats sixth. The batting position
equations score him as best on the team in the third,
fourth, and fifth spots, but Maldonado, White, and
Alomar rate so low as sixth, that Carter is put there

instead. Tests using the Markov model showed its
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makes virtually no difference if Carter bats fourth
and White and Alomar fill the five and six slots in
¢ither order,

“Minnesota’s Tom Kelly employed the following
order in the four games against right handed
starters:

1) D. Gladden, 2) C. Knoblauch, 3) K. Puckett,
4) K. Hrbek, 5) C. Davis, 6) B. Harper, N S.
Mack, 8) M. Pagliarulo, 9) G. Gagne. '

The Markov process expected runs per game 18
5.383 for this lineup, which is higher than the
Twins 1991 average of 4.790 for the reasons given
previously.

The best model generated lineup is:

1) Hrbek, 2) Davis, 3) Mack, 4) Puckett, 5)
Harper, 6) Gagne, 7) Gladden, 8) Pagliarulo, 9)
Knoblauch.

The Markov value of the model lineup is 5.431,
about 8 runs higher than Kelly’s, which might yield
one more victory. Clearly, the model resuit flies in
the face of "conventional wisdom"”, but one reason
for building models is to gain new knowledge.
Perhaps the best thing is getting Gladden out of the
lead off spot because his 1991 OBA of .306 is by
far the worst among the nine players. I am never
ceased to be amazed by managers who are 50
fascinated by speed that they forget players can’t
steal first base! Davis and Hrbek have the two
highest OBAs, and the model takes advantage of
this by loading the top part of the order. One
reason Davis with a slugging average of .507 can
bat second is that Mack’s at .529 is even better.
Knoblauch is an interesting case because the model
values him highest at either the top or bottom of the
order., However, on this team, he is best suited to
the bottom because his OBA is far from the best.

One important factor not considered is what
assumptions, if any, the managers make about
batting performance by their piayers. If I knew
such, those levels could be put into the models, and
then we could judge better how well the managers
constructed their batting orders. '

Those with computer baseball games that will
automatically play hundreds or thousands of games
may find it interesting to enter the 1991 data for
these two teams and then compare the scoring of the
lineups shown above for a large number of games.
I would be interested in seeing how the results of
the simulations compare with the Markov
calculations.

As a test of how well the models work, I
compared lineups found by the models with lineups
used by the teams in 1990. For each team, I
tabulated the number of times each player started a

game in each batting order position. From this
information, I constructed one or more typical
lineups for each team. Some teams did not really
have anything close to a set lineup, and others
platooned certain fielding and batting order
positions. In all cases, I developed batting orders
that were typical of those used by the managers and
that reflect their thinking. Using the Markov
process expected runs calculations, 1 compared the
best team lineup with the best lineup found by
either of the two sets of models -one using all the
candidate independent variables and one using the
reduced variable set described above. The table
shows the extent to which the model did better than
the major league managers

Table 2: Advantage in Expected Runs
of Model Over Managers
ApPprox.

Runs/Game R/162G AL NL

095 -.105 16.0 I* 0

.085 - .054

075 -.084 12.0 ]

065 -.074 11.0 1 2

055 -.064 9.5 2 1

045 - .054 8.0 4 2

035-.044 6.5 1 2

025-.034 5.0 1 3

.015-.024 3.25 2

.005 - .014

-.005-.005 © Ak | Rkkk

*Chicago White Sox

**Philadelphia

*x*Boston, Milwaukee

***xSan Francisco

A general rule of thumb is that an additional 10
runs a season leads to one more win. We see that
the model lineups were better than the managers’ in
23 of 26 cases with the other three being virtually
equal. These comparisons are far from definitive
because the models are based on the assumptions
listed previously. Also, managers consider many
factors when deciding on batting orders, some of
which can’t be modeled. For example, although
Barry Bonds would be an outstanding leadoff hitter
because he gets on base so much, according to an
article in August 12, 1991 Sporting News he prefers
1o bat 5th where he can get more RBIs and hence
more attention and presumably a higher salary.
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Even if he has faith in my models, Jim Leyland
might figure that a happy Bonds hitting fifth can
help his team more than an unhappy Bonds leading
off. Moreover, Bonds might not draw so many
walks if he were batting first.

Conclusion. Although I believe this study is a
major advance of our knowledge about batting
orders, the models discussed are not intended to be
the final word on this subject. In particular,
incorporation of some situational batting effects
should be considered. One, of particular interest, is
how the strength or weakness of the next hitter(s}
affects a player’s batting performance. For
example, is there really a tendency to “pitch
around" a strong hitter if he is followed by a weak
one. The primary problem is obtaining relevant
data. Also, there is room for improvement in the
statistical (regression) modeling process; additional
candidate independent variables should be studied.

I hope that this article has convinced readers
that mathematical and statistical techniques can be
useful for tools for designing higher scoring batting
orders. For those who are interested in actually
using the models described, if all goes according to
plans, they should be part of the 1992 edition of the
- APBA computer baseball game (contact the
publisher, Miller Associates, 11 Burtis Ave., New
Canaan, CT 06840 for details).

Mark Pankin is an operations research analyst.
Comments about this piece can be directed to
h;m at 1018 N. Cleveland St., Arlington, VA
22201. .
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A Retention Model of Employment
Discrimination:
The Case of Major League Baseball

By Donald A. Coffin

Employment discrimination need not take the
form of wage discrimination, discrimination in
hiring, or occupational segregation. It may also
take the form of discrimination in retention, in
which members of a minority group must meet
higher standards for retention or promotion.! This
may represent the most difficult form of discrimi-
nation to identify or to combat, for at least two rea-
sons. First, assuming firms use performance mea-
sures to make retention decisions, these perfor-
mance measures may not be readily observable by
persons outside the firm.

Second, retention decisions are generally made
about employees whose performance is marginal.
That is, firms will only rarely decide to terminate
employees with above average performance.
Because decisions about marginal performers are
likely to be made on the basis of small differences
in performance, some part of those decisions may
be based on non-observed performance differences.

It therefore becomes important to examine those ~,
relatively limited instances in which performance
data and retention decisions are observable. In this —~
respect, professional sports provide us with excel-
lent data on performance and clearly observable
data on retention. Within professional sports, base-
ball may provide the best data set, in that all non-
pitchers carry some offensive responsibility. In this
study I examine differences in retention among
white players, players born in Latin America, and
blacks born in North America for the 1960 to 1989
period. Briefly, I find some evidence of retention
discrimination against both blacks and Latins; this
discrimination appears to occur only in the 1976-
1989 period.

Retention Models and Employment
Discrimination. The issue of differences in
employee retention as a manifestation of employ-
ment discrimination has been addressed by a
number of authors. Robert Hall (1982), in

1. See Spurr (1990) for an analysis of this issue as it applies to
promotion to partner in law firms. Olson and Becker
(1983) examined promotion opportunities mode broadly
and found that women were less likely than men to be
promoted, given performance levels. Hall (1982, p. 716),
on the other hand, found that the "duration of employment —,
among blacks is just as long as among whites." '




exploring the extent of and importance of lifetime
jobs in the U.S. economy, found that "(t)he dura-
tion of employment among blacks is just as long as
among whites" (p. 719). If there are no perfor-
mance differentials between blacks and whites, this
suggests that there are no differences in retention.
However, if performance differentials exist, equal
employment duration may accompany discrimina-
tory retention practices by employers.

Olson and Becker (1983) examined whether
returns to promotion were similar for men and
women, and whether men and women had equal
promotion opportunities. Using data from the
Quality of Employment Panel, they found that "the
returns from promotion are largely the same for
men and for women" (p. 641). However, they also
found that, had the same promotion standards been
applied to men and to women, roughly 32% of the
women in the sample would have won promotions;
in fact only about 19% of the women were pro-
moted (p. 637). If some employers practice "up-or-
out” retention systems, these findings suggest that
women will be less likely to retain their jobs than
will men,

Olson and Becker’s findings are supported by
Stephen Spurr’s (1990} work on promotion in the
legal profession, in which being promoted to part-
ner is, in many firms, a requirement for retention.
Spurr finds that men are significantly more likely to
be promoted to partner than are women, although
he also finds no significant differences in quality of
training or in performance as lawyers (pp. 415-
416). He concludes that "(a)t 2 minimum, the
results...are strongly suggestive of discrimination,
in Becker’s sense of the term” (p. 416). This dis-
crimination in promotion opportunities suggests that
women must be more productive than men to be
promoted and thus more productive than men to be
retained.

In a study of major league baseball, Robert
Jibou (1988) examines the "career mortality” (p.
525) of black, Hispanic, and white players. In the
absence of performance differentials, he notes,
length of playing career should be the same for all
groups. Using data for the 1971-1985 period, he
estimated a hazard function for retirement, using
player age on entry into the major leagues, playing
position, and performance (measured by career bat-
ting average, career slugging average, and career
on-base average) (pp. 528-529). He finds that His-
panics are no more likely than whites to retire
(given age, position, and performance), but that
blacks apparently face some discrimination in
retention. Blacks are less likely to be retained, at

any age and performance level than are whites (pp.
530-532). _

Jibou’s study, however, has several drawbacks.
First, he combines into one data set information on
player retention for a 15-year period. If changes
occurred within this period in the relative perfor-
mance levels of black, Hispanic, and white players,
his results may be biased. Furthermore, his results
will not necessarily capture changes that may have
occurred in the decision-making of teams within

‘this period (i.e., teams became either more likely or

less likely to apply higher performance standards to
blacks of to Hispanics). Second, he examines only
career terminations as a measure of the retention
hazard. If teams are more likely to demote blacks
or Hispanics to the minor leagues, this form of
retention discrimination will not be captured by
Jibou’s analysis.

Differences in Retention, Employment
Experience, and Performance in Major
League Baseball. If blacks and Latins experi-
ence discrimination in retention, we would expect
to observe higher performance levels among blacks
and Latins than among whites. Aaron Rosenblatt
(1967) first explored the possibility of performance
differentials in major league baseball, finding that
career batting averages were significantly higher for
black hitters than for white hitters and career earned
run averages were significantly lower for black
pitchers than for white pitchers during the 1953-
1965 period. Rosenblatt’s findings might, how-
ever, be expected during a period of integration, in
which the best-performing blacks will gain
employment more rapidly. Over time, and in the
absence of discrimination, we might expect to
observe that the performance gap between blacks
and whites would close.

Using data for the period 1960 to 1989, we can
track the differences in several measures of offen-
sive performance for blacks and whites. I have
chosen to present two such measures here. The
first is a measure I refer to as IMP, which provides
a measure of the amount of playing time allocated
to black players and to white players.? For a full-
time player, IMP will be approximately 100, If
there are no performance differentials between
blacks and whites, we would expect no significant
differences in IMP between blacks and whites.
However, in every year, the mean value of IMP for
black players is significantly greater than the mean

2. It is calculated as IMP = (1/3)*SQRT(GAMES*AB),
where GAMES in the number of games played in a season
and AB is the number of official at-bats in that season.



value of IMP for white players. Furthermore, there
is no tendency for the difference between blacks
and whites to narrow (see Figure 1)°,

The second performance measure [ use is stug-
ging average (SA).4 Throughout the 1960-1989
period, the mean SA for blacks was higher than the
mean SA for whites, although the difference nar-
rowed in the late 1970s and in the 1980s (see
Figure 2). Itis not clear why differences in IMP
did not narrow along with narrowing differences in
other performance measures. _

Because black performance levels exceed those
of whites, blacks can have higher retention rates
and more experience than do whites, even in the
presence of discrimination. I define player reten-
tion to occur if a player in on a major league roster
both in year t and in year t+1; he need not be on
the roster of the same team for two consecutive
years. In general, black retention rates did exceed
those of whites for most of the 1960-198% period
(see Figure 3), and blacks had, on average, more
experience than did whites beginning in the mid-
1960s (see Figure 4). There is no simple and
apparent relationship between retention and player
performance that emerges from an inspection of
these data.

A Model of Retention. Major league base-
ball is an unusual industry in that the labor market,
even following the abolition of the reserve clause in
1976, contains large elements of monopsony.3
Players can still be transferred between teams with-
out their consent (until they are 10-and-5 players--
10 years in the major leagues with at least five
years tenure with their current teams--or unless they
have negotiated "no-trade” clauses in their con-
tracts). There is substantial involuntary mobility.
Nearly 25% (117/473) of non-pitchers who
appeared on a major league roster in 1989 and in an
earlier year (generally 1988) were on the roster of a
different team in 1989. More than 80% of these
n}oveg were involuntary from the player’s point of
view.

3. All of the diagrams appear at the end of the article.

- 4, Data cn batting average (BA) and on-base average (OBA)
provide similar differences between blacks and whites. |
use SA because it is the performance variable which is
most frequently significant in the LOGIT models of
retention.

5. Complete discussions of the structure of the labor market
for player talent can be found in Scully (1989), Dworkin
(1981), Jennings (1990), and Lowenstein (1991).

6. Counted from player records in Thorn and Palmer (1990),
pp- 29-80.

Because major league baseball players earn
salaries that are (on average) substantially greater
than their alternative earnings opportunities,” I
assume that few players voluntarily surrender their
positions. This allows me to assign decision-mak-
ing responsibility for continuity of employment in
major league baseball to the teams. 1 define a
dichotomous variable RET, equal te 1 if a player in
on a major league roster in years t and t+1 and
zero if he is on a major league roster in year t, but
not in year t+1.8 Note that a player need not be on
the same team in two successive years; he need only
be on a major league roster in two successive years.

If team owners are profit motivated,’ they will
prefer players who are more productive to players
who are less productive. This suggests retaining
players for whom expected performance will be
greater, As indicators of expected performance, I
use immediate past performance (PERF) (in year t},
player age (AGE),!® and a measure of the quantita-
tive aspects of a player’s contribution to his team
(IMP; see fn. 2 above). We would expect players
with greater expected performance (higher past per-
formance, higher IMP, younger) to be more likely
to be retained. Performance data were obtained
from Thorn and Palmer (1991).1!

If there is discrimination in retention, then
blacks and Latins will be less likely to be retained.
Accordingly, I included in the analysis dummy .
variables for race (BLACK = 1 if the player was a
North American-born black, = 0 otherwise) and
ethnicity (LATIN = 1 if the player was born in
Latin America, including Puerto Rico, = 0 other-
wise). Data on place of birth were obtained from
Thom and Palmer (1991); data on race was
obtained by a visual inspection of baseball card
photographs in Topps (1991).12

7. The minimum salary in major league baseball in 1991 was
over $100,000; the average salary was in excess of
$800,000.

§. I have excluded players who died in between seasons (e.g.,
Lyman Bostock, Ken Hubbs, Thurman Munson), or
players who were not on a major league roster in year t+1
because of serious injuries from which they recovered
(e.g., Damaso Garcia).

9. See Scully (1989), chapter 6, for evidence on whether team
owners are profit motivated.

10. There is substantial evidence (James [1982], pp. 191-206)
that player performance declines predictably with age,
rather than with experience,

11. I want to express my appreciation to Pete Palmer for
making the computerized data base underlying Thom and
Palmer (1991) available to me.

12. I was unable to identify the race of only one player in my
sample; he was, accordingly, eliminated from the sample. )
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The model then took the form of:
(1) RET = f(BLACK, LATIN, AGE, IMP, PERF)

There were too few pitchers to incorporate
pitchers in the analysis;!? [ accordingly limited the
analysis to non-pitchers. Because the dependent
variable is dichotomous, I used a logit procedure to
estimate the model each year for a thirty year
period, beginning with players who were active in
1960 and either were (RET = 1) or were not active
in 1961 (RET = 0) and ending with players who
were active in 1989 and either were or were not
active in 1990. In every year, the coefficients on
AGE and IMP were significant and had the
expected sign (negative and positive respectively).
Performance variables were significantly and
directly related to RET in 24 of the 30 years.14 The
sample sizes tended to grow over time (partly
because there are more teams now than there were
in 1960), from 316 to 465.

Because my primary concern is with the influ-
ence of race and ethnicity on retention, I report the
coefficients on BLACK and LATIN in Table 1 {on
p. 12). This table suggests little or no discrimina-
tion against blacks and Latins. The coefficient on
BLACK is significant only four times in 30 years
(once positive, three times negative); the coefficient
on LATIN is significant only three times (twice
positive, once negative).

However, on closer examination, the annual
coefficients display an interesting pattern. Begin-
ning in 1976, the coefficients on both BLACK and
LATIN were much more likely to be negative than
positive. In the first 16 years of the analysis, the
coefficient on BLACK was negative five time; the
coefficient on LATIN was negative nine times.
Neither of these results was a surprise.

Assume the expected coefficient on BLACK and
on LATIN is zero. We can then examine the esti-
mated coefficients as a sample from a distribution

13. By 1988, only about 10% of the pitchers in major league
baseball were either Latin or black (Hadley and Gustafson,
[forthcoming]).

14. The same performance variable does not appear in all
regressions; batting average appears in five regressions—-all
in the 1960s; on-base average also appears five times
{scattered throughout the period); slugging average appears
14 times, inciuding 10 times between 1979 and 1989.
Because teams may change their minds about which
performance variable is most important, 1 decided not to
constrain the regressions to include the same performance
variable in every year. Complete results of the LOGIT
estimation process are available on request.

with an expected mean of zero, and with a proba-
bility of 0.5 that any observed coefficient will be
negative. I calculate, using the binomial theorem,
that there is a 90% probability that five or more of
the coefficients on BLACK would be negative in
the 1960-1975 period; there is a 39% probability
that nine or more of the coefficients on LATIN
would be negative.

However, in the 1976-1989 period, 11 of the
coefficients on BLACK, and 12 of the coefficients
on LATIN were negative (out of 14). Again based
on the binomial theorem, I would expect 11 or
more negative coefficients only 3% of the time, and
12 or more negative coefficients less than 1% of the
time. This suggests that a change in the retention
experience of blacks and Latins sometime in the
mid-1970s. _

To examine this possibility more closely, I
computed retention rates for whites, blacks, and
Latins for each year. Given the importance of
AGE, IMP, and performance variables in the
LOGIT models, I modeled annual retention rates as
a function of AGE, IMP, and performance (on-base
average--OBA--performed best in this model).
Given the variations in retention rates, age, impor-
tance, and performance over time, I transformed all
variables by dividing each year’s value for each
variable by the annual mean for that variable.!5 I
also included a dummy variable, D76, equal to 1
for 1976 and subsequent years (and equal to 0 for
1960-1975). The best fit was a log-log model; the
results are presented in Table 2. Note that the
results are similar to those for the annual regres-
sions--older players are less likely to be retained;
players performing more (IMP) or better {OBA)
were more likely to be retained. The coefficient on
D76 was negative--retention rates were about 1%
lower--and significant.

Disaggregation by race and ethnicity led to dif-
ferent results. First, the three disaggregated regres-
sions differed significantly from the pooled regres-
sion. Second, the variables designed to measure
expected performance were generally insignificantly
related to retention. This is largely because the
variations in these performance indicators varied
relatively little within a group, but varied substan-
tially across groups.

Most importantly, the coefficient on D76 was
negative and significant for blacks and Latins, sug-
gesting a 5% lower probability of retention for
blacks and a 7% lower probability of retention for

15. The retention rate for blacks (etc.) in year t was divided
by the retention rate for all players in year t, and so on.
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Table 1: Effects of Race and Ethnicity on Retention

Black Latin

Year Coeff, t-Stat. Coeff. t-Stat.
1960 +1.44 +1.31 +1.70 +1.41
1961 -0.17 -0.27 -0.84 -1.21
1962 -0.63 -1.08 -1.01 -1.48
1963 -0.38 -0.83 +1.60* +1.,72%
1964 -(.32 -0.61 - -1.25%* -2.37**
1965 +1.16* +1.85* +2.25%* +2.06**
1966 +0.11 +0.24 -0.01 -0.01
1967 +0.07 +0.16 -0.10 -0.20
1968 +0.24 +0.44 +1.75 +1.64
1969 +0.10 +0.22 -0.41 -0.83
1970 +0.24 +0.48 -0.05 -0.08

| 1971 -0.54 -1.27 -0.25 -0.50
1972 +0.36 +0.40 +0.59 +1.27
1973 +0.42 +0.87 +0.34 +0.63
1974 +0.33 +0.83 -0.01 -0.02
1975 +0.31 +(0.72 +0.57 +0.93
1976 -0.85** -2.02** --0.59 -1.15
1977 -0.56 -1.54 -0.28 -0.64
1978 +0.30 +0.69 +0.55 +1.09
1979 -0.18 -0.42 -0.32 -0.68
1980 -(0.80** -2.24%* -0.50 -1.16
1981 +0.28 +0.66 -0.57 -1.34
1982 -1,09%x* -3.06%** -0.06 -0.13
1983 -0.25 -0.61 -0.64 -1.60
1984 -0.57 -1.57 -0.45 -1.03
1985 +0.01 +0.02 -0.37 -0.91
1986 -0.32 -0.87 -0.32 -0.69
1987 -0.52 -1.44 +0.08 +0.18
1988 -0.48 -1.22 -0.25 -0.53
1989 -0.04 -0.08 -0.60 -1.23

* Significant at the 10% level.
** Significant at the 5% level.
***Significant at the 1% level.
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Table 2: Explaining Variations in Annual Retention Rates
Variable  Total White Black Latin
Constant  +0.01 -0.01 -0.11 +0.05**
(+1.37) (-0.61) (-1.68) (+2.17)
LRAGE -0.53%x* -0.16 -2.08%** -0.52**
(-3.31) (-0.29) (-3.65) (-1.96)
LRIMP +0.11** +0.01 +0.08 -0.14
(+2.64) (+0.05) (+0.86) (-0.98)
LROBA +0.45%*  +1.11 -0.62 +0.62
(+2.86) (+1.32) (-0.89) (+0.59)
D76 -0.01* +0.004 -0.05** -0.07**
(-1.83) (+0.46) (-2.60) (-2.62)
PCTBLACK +0.71%*
(+2.43)
Adj.R?  +0.35 -0.02 +0.49 +0.26
F +12.91 +0.89 +6.64 +3.61
N 90 30 30 30
N * Significant at the 10% level.
** Significant at the 5% level.
***Significant at the 1% level.
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Latins beginning in 1976, compared to the earlier
period. The coefficient on D76 was positive and
insignificant for whites. Again, this suggests a
change in the retention experience of blacks and
Latins beginning in the mid-1970s.

How can we explain this change? There is sub-
stantial evidence that there was no salary discrimi-
nation against blacks and Latins in the late 1970s
and 1980s.! Furthermore, the structure of the labor
market changed in the mid-1970s, with the intro-
duction of salary arbitration and free agency making
the salary determination at once more competitive
and more public. If team owners were seeking
opportunities to continue discriminating against
blacks and Latins in a climate that made continued
salary discrimination less likely, then discrimination
against marginal blacks and Latins in making reten-
tion decisions could have been a possibility.

Unfortunately, there is also no evidence that
blacks and Latins experienced salary discrimination
in the 1960s and early 1970s.2 We cannot, there-
fore, accept this as an explanation.

A second possibility is the existence of a
"quota" or effect. In this case, discrimination does
not occur until minority representation in employ-
ment reaches a critical level. Once that level is
reached, discrimination begins to manifest itself in
one form or another. Note (in Figure 5) that the
proportion of black and Latin non-pitchers in the
major leagues rose fairly steadily until about 1975,
reaching about 40%, at which point it plateaued. It
is worth noting that this occurred along with con-
tinued performance differentials in favor of blacks.
These performance differentials would ordinarily
suggest continued displacement of whites by blacks
until performance levels equalized. The failure of
this to happen suggests that team owners may have
altered the criteria for retention in the mid-1970s,
SO as to prevent minority representation among non-
pitchers from continuing to rise.

Conclusions. The year-by-year analysis of
employee retention in major league baseball does
not, by itself, suggest that teams in major league
baseball were engaging in discriminatory retention
decisions. However, the fact that the coefficients
on race and ethnicity were almost always negative
beginning in 1976, and the significance of a dummy
variable for the 1976-1989 period in regressions for
annual relative retention rates for blacks and His-

1. See Christiano (1986 and 1988), Cymrot (1985), Kahn
(1989) and Raimondo (1983).

2. See Medoff (1975), Mogull (1975 and 1981), Pascal and
Rapping (1972), and Scully (1974).

panics, suggests a change in the decision-making of
major league baseball teams in the mid-1970s. —~

One consequence of this change is that the pro-
portion of non-pitchers who were either black or
Latin stopped increasing in the mid-1970s, follow-
ing 15 years of steady increases. While there is no
direct evidence of a "quota" for blacks and Latins
(in part because of substantial variations in minority
representation between teams), the proportion of
non-pitchers who are black or Latin has remained at
about 40% since 1976. Had it continued to rise as
it had before 1976, more than 50% of the non-
pitchers in the major leagues would be blacks or
Latins.

The increased difficulties in retention faced by
black and Latin players is, of course, entirely
among marginal players. Blacks and Latins contin-
ued, in the late 1970s and in the 1980s, to be more
likely to be full-time players than did whites, and
the differences between blacks and whites in my
measure of playing time (IMP) did not narrow
(although the performance differentials did narrow).
It is not surprising that any retention discrimination
will affect marginal players, since it is among
marginal players that the performance differentials
are smallest and the decisions perhaps more affected
by subjective or non-observed factors.

Team managements often use terms such as N
"chemistry" is discussing the process of making
choices among marginal players. If management
perceives black or Latin players to be less congenial
or less willing to accept marginal roles, then they
will be perceived as being less likely to contribute
to a desirable "chemistry” on the team. Among
marginal players, where the performance loss will
be less if a less able white is retained and a more
able black is let go, this perception may have sub-
stantially greater force. The effect, however, is
that blacks and Latins, with higher measured per-
formance, are less likely to keep their jobs in major
league baseball than are whites.
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Slugging Averages

Figure 1: IMP for Blacks and Whites,
1960-1989 |
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Retention Rates

Experience

Figure 3: Retention Rates for
Blacks and Whites, 1960-1989
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