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Welcome
Phil Birnbaum, Editor

Welcome to the May BTN.  Thanks to Rob Wood, Clifford Blau,
James Fraser, and Tom Hanrahan for their time, effort, and
contribution.  Thanks also to the anonymous peer reviewers for

your help.  Hope you enjoy the issue, and please contact our
contributors if you liked their work.  Deadline for contributions
for next issue is July 24.

A Brief Review of “Defense Independent Pitching Stats”
Clifford Blau

One of the most interesting articles I have read recently is
entitled “Defense Independent Pitching Stats, “ which was
written by Voros McCracken.  It can be found on the Internet at
http://www.baseballstuff.com/fraser/articles/dips.html.

I recommend it be read
by all.

To summarize this and a
follow up article, Mr.
McCracken states that
the ratio of hits allowed
by pitchers to balls in
play is not a skill.
Specifically, he shows
that the correlation of
this ratio from one year
to another is so low that
one cannot conclude that
it is under the control of
the pitcher.  Initially he concluded that this hit ratio was the
responsibility of the fielders, but discussion on a posting board at
the same Web site led him to agree that the variation was more
likely due to luck.  I checked the correlation of this statistic for
pitchers and hitters for the 1974 and 1975 American League,
getting results similar to Mr. McCracken’s.  He also states that
pitchers may be evaluated using an average rate of hits allowed
per ball in play rather than their actual figure, as this has a higher

correlation with the following season’s ERA than does the
current season’s ERA, or component ERA (essentially ERA
calculated using a runs predictor formula.)

Some
comments on
the article:  A
better test
would involve
a park-
adjusted rate.
Also, the
discussion on
the posting
board included
a consideration
of career
numbers.  The
range of this
ratio using

career figures in rather small, almost all pitchers being within
.020 of the average.  It was also determined that the career ratio
is a better predictor of the following season’s ratio than the
current season’s is.  This seems to support the idea that the ratio
for a season is highly dependent on luck.

Clifford Blau, 16 Lake St. #5D, White Plains, NY, 10603,
brak@erols.com ♦
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Informal Peer Review

The following committee members have volunteered to be contacted by other members for informal peer review of articles.

Please contact any of our volunteers on an as-needed basis - that is, if you want someone to look over your manuscript in
advance, these people are willing.  Of course, I'll be doing a bit of that too, but, as much as I'd like to, I don't have time to

contact every contributor with detailed comments on their work.  (I will get back to you on more serious issues, like if I don't
understand part of your method or results.)

If you'd like to be added to the list, send your name, e-mail address, and areas of expertise (don't worry if you don't have any - I
certainly don't), and you'll see your name in print next issue.

Expertise in "Statistics" below means "real" statistics, as opposed to baseball statistics - confidence intervals, testing, sampling,
and so on.

Member                                                        E-mail                                                           Expertise                                       
Jim Box im.box@duke.edu Statistics
Keith Carlson kcarlson@stlnet.com Economics/Econometrics/Statistics
Rob Fabrizzio rfabrizzio@bigfoot.com Statistics
Larry Grasso l.grasso@juno.com Statistics
Tom Hanrahan HanrahanTJ@navair.navy.mil Statistics
Keith Karcher kckarcher@compuserve.com General
John Matthew john.matthew@home.com Apostrophes
Duke Rankin RankinD@montevallo.edu Statistics
John Stryker johns@mcfeely.interaccess.com General
Steve Wang Steve.C.Wang@williams.edu Statistics

Receive BTN by E-mail

You can help save SABR some money, and me some time, by receiving your copy of By the Numbers by e-mail.  BTN is sent
in Microsoft Word 97 format; if you don’t have Word 97, a free viewer is available at the Microsoft web site

(http://support.microsoft.com/support/kb/articles/Q165/9/08.ASP).

To get on the electronic subscription list, send me (Phil Birnbaum) an e-mail at birnbaum@sympatico.ca.  If you’re not sure if
you can read Word 97 format, just let me know and I’ll send you this issue so you can try

If you don’t have e-mail, don’t worry–you will always be entitled to receive BTN by mail, as usual.  The electronic copy is sent
out two business days after the hard copy, to help ensure everyone receives it at about the same time.

E-Mailing the Editor

I have been told that my iname.com and philbirnbaum.com e-mails often don’t work.  Those go through internet forwarding
services before they reach me, and it seems these services are unreliable.

My “real” e-mail address – for now – is birnbaum@sympatico.ca.  If that ever fails to work – who knows, I may change service
providers again someday – try either phil_birnbaum@iname.com, or BTN@philbirnbaum.com.

Sorry for any inconvenience.
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Committee Chair

News on the SABR Publication Front
Neal Traven, Committee Co-Chair

One of the common threads in discussions among members of the Statistical Analysis Committee revolves around the difficulty of
convincing SABR to publish statistically-oriented articles in its general-distribution journals.  Though it may be somewhat self-defeating to
talk about this problem in BTN, where we assuredly do print statistical work, a potential avenue for gaining a wider SABR audience may be
at hand.  In a May 17 e-mail to all research committees and regionals, SABR Publications Director Mark Alvarez floated the possibility of
producing a publication composed of submissions directly from those sources.  Quoting directly from Mark’s email:

The idea would be for each committee/regional to decide -- in its own way -- upon a representative article, to handle all
fact-checking, photo-gathering, table-creating, etc., and to submit this finished product to me ready to roll.

I have discussed this concept with (Committee co-chair) Clem Comly and Phil Birnbaum, and we believe it to be an idea worth pursuing.
But we’ve identified a number of issues that we’d need to deal with on the way to publication.  Our thought is that the article(s) to send to
Mark for this publication should be on the order of a “Best of BTN,” selected from the last year of so of the newsletter.  Clearly, any chosen
article must be accessible to a larger audience, which might entail editing and/or rewriting the material to increase its words/technical ratio.
Ideally, it would be both entertainingly informative and sabermetrically meaty.  We would of course need to obtain the author’s permission
to republish his/her work in another publication, and most likely ask the author either to edit it or allow it to be edited.

A larger concern, however, is devising a method for selecting the article or articles to be submitted.  My thought is to appoint a small panel
of committee members, no more than five including Phil and either Clem or myself.  This panel’s charge will be to come up with a short list
of worthy recent articles that can then be voted on somehow by the membership of the SAC.  Any such voting would, almost of necessity,
take place via email.

It’s quite possible that this proposed publication won’t get off the ground at all even if our research committee produces a worthy
submission.  It’s also possible that we won’t find members willing to help select articles, or won’t find appropriate articles, or won’t find any
interest in voting on articles.  But I think we should give it a shot and work toward presenting our approach to baseball research to our
colleagues in the Society.

If you’re interested in serving on the article-selection panel, or have a favorite article that you’d like the panel to consider, please send email
to me or Phil expressing your level of interest.  We expect to discuss this proposal at the SABR 30 committee meeting on June 22 – yes, an
actual agenda item! – and I’d like to believe that we’ll be ready to appoint the selection panel by then.

Neal Traven, 500 Market St. #11L, Portsmouth, NH, 03801; 603-430-8411; beisbol@mediaone.net ♦

Convention Meeting

The Statistical Analysis Committee Annual Meeting, at the SABR convention in West Palm Beach, will take place on

Thursday, June 22, from 3:00pm to 4:00pm.

mailto:baseball@ttlc.net
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Review

“Baseball Prospectus” – Escaping Bill James’ Shadow
James Fraser

The “Baseball Prospectus” annual is the latest evolution of the Bill James Baseball Abstract.  While not nearly as absorbing as James’
work, writes the author, it does cover baseball with depth, intelligence, and solid sabermetric methods.

Baseball Prospectus 2000 begins with a forward from current ESPN.com columnist, and former Bill James assistant, Rob Neyer.  Neyer’s
introduction sets the tone for the entire book: BP is the product of people who were greatly influenced by the father of sabermetrics, a group
that is growing in size and influence.  Baseball Prospectus is the next generation of Bill James’ Baseball Abstracts, and will play a pivotal
role in increasing the awareness of sabermetrics.  While the book owes much to James, it does manage to craft out a unique identity.
Baseball Prospectus is structured differently, there are a greater variety of voices, and although the essays are not as absorbing as James’, BP
is definitely worth a read.

The skeleton of BP is Clay Davenport’s complex, yet excellent statistical
analysis.  His Davenport Translations (like James’ Major League
Equivalencies), and Equivalent Average system (like James’ Runs
Created per 27 outs, but made to fit the batting average scale) are
explained in a friendly question and answer format.  The Q and A allows
BP’s extremely statistical methods to be explained without intimidating
the large portion of their audience that isn’t interested in the science
behind sabermetrics, but is interested only the results of the analysis.
For those interested more in the mechanism behind the book’s system,
your best bet is its excellent web site (www.baseballprospectus.com).

The greatest strength of BP lies in the ability of the Davenport
Translations to compare every single player in organized.  Using a series of “difficulty fa
anywhere in the book, the Translations can be used to directly compare players in A-ball
in the majors to players in Japan (BP stubbornly includes Roberto Petagine).  Pitchers al
peripheral statistics.  The almost 2000 players covered in the book are presented with the
packed comments.  The table below shows some selected translated EqA’s; remember, th

Each player capsule also includes a projection line, created by Propsectus’s “Wilton” pro
works is not answered in the book, but to the best of my knowledge it uses historical com
projections.  BP hasn’t tried to project pitchers, for good reason, especially given the nu
interesting tool, but far from revolutionary.  I’m sure that some people really value the p

The best, and usually longest, discussions are reserved for the most interesting players, b
amusing comments.  The breadth of their comments and translations -- they truly live up
valuable asset for learning about future stars and gaining new insights into veterans.

The player comments are organized by team and
preceded by a team essay.  The team essays are rather
uneven.  Some simply recap the 1999 season and rant
about the stupidity of the local general manager, while
others raise interesting points of discussion.  Although
all are written in good humour, I prefer those that break
the mold of: This is where the team was, this is where
they are and this is where they’re going.  My favourite
was the analysis of the Cincinnati Reds, including a
fascinating discussion of their unconventional bullpen
usage.  Contrasting the relief usage patterns of the Reds with the Indians makes a compe
game situation requires it, not when Jerome Holtzman’s save rule says the manager shou

By Chri
Sheen

Brass
Baseball Prospectus 2000

s Kahrl, Clay Davenport, Joseph S.
an, Rany Jazayerli and a Team of
Experts on Baseball Talent

ey’s Sports, 536 pages (paperback),
$21.95

ISBN 1-57488-214-7
ctors,” which are regrettably not published
 (Rafael Furcal or any other hot prospect) to players
so have their statistics translated, with a focus on
se Davenport Translations and brief, information-
ese ratings take into account league and park.

jection tool.  Exactly what Wilton is or how it
parisons and a “neural net” system to derive

mber of minor league pitchers covered.  Wilton is an
rojections, but for me they’re only a sideshow.

ut all players receive sharp, often sardonic, always
 to their claim of covering A-ball to the majors -- is a
Selected EqA’s

Name Team League EqA
Mark McGwire STL NL MLB 0.344
Rey Ordonez NYM NL MLB 0.220
Nick Johnson NOR EAS AA 0.340
Rafael Furcal MAC SAL A 0.262
Roberto Petagine YAK  JAP 0.325
Page 4

lling argument for using your best reliever when the
ld reach for the phone.

http://www.baseballprospectus.com)/
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Three other systems independent of the Davenport Translations are used to evaluate pitchers: Pitcher Abuse Points, Support-Neutral Records
and a new Reliever Evaluation Tool.  Rany Jazayerli and Keith Woolner revisit last year’s biggest hit: Pitcher Abuse Points (PAP).  The
system, far from perfect, provides insight into pitcher workload and especially the danger of overworking young pitchers.  PAP needs
improvement; right now it’s nothing more than a surprisingly revealing system that is not based in empirical evidence.  The authors promise
to improve the system using historical data, but I’m not entirely sure whether PAP will ever be anything more than a system of educated
guesses.

Mike Wolverton takes advantage of more detailed game data to analyze both starting and relief pitching.  His Support-Neutral Records
system tells us what a pitcher’s won/loss record would have been given average run support. The pitcher is assigned a certain number of
wins and losses for each game he appears in, based on the base/out situation when he left the game.  I’ve never understood the strange
fascination with giving a pitcher a win or a loss, but I suppose that Wolverton’s is an improvement over figuring after the fact support-
neutral records, and a massive improvement over traditional won/loss records.  Wolverton also contributes a new reliever evaluation tool; it
is an update of an old STATS Scoreboard standby called “runs prevented”, with the addition of park factors and some other slight technical
tweaks.  The reliever evaluation tool is information worth having, but doesn’t really deserve the almost 20 pages it takes up.

There are some other nice features that I really enjoyed.  Rany Jazayerli chimes in with a top 40 prospects list, and Keith Woolner presents a
list of great questions for sabermetrics to answer in the next millennium.  Both features are enjoyable, and I hope that BP makes an attempt
to answer some of Woolner’s questions in the future.

This is my second Baseball Prospectus, and it is a book I will continue to buy in the future.  The strength of the book is the Davenport
Translation system, which allows for comparison across levels.  The writing will probably never be as good as Bill James’, but I think that
Baseball Prospectus has its own identity and need not remain in James’ shadow.  They cover a far broader range of players, have more
involved statistical analysis and utilize a wide variety of voices.  The format of BP will be similar next year, they’ll introduce new tools,
improve some old ones.  Baseball Prospectus is a worthy buy both for the amount of players it covers and the sabermetric sophistication
with which it covers them.

James Fraser, 297 Old Orchard Gr., Toronto, Ontario, Canada, M5M 2E6, jfraser99@hotmail.com. ♦

Book Reviews Wanted

Every year, a number of books and magazines are published with a Sabermetric slant.  Many of our members have never
heard of them.  Our committee members would like very much to hear when this kind of stuff comes out.

If you own a copy of any baseball book of interest, we’d welcome a summary or a full-length review.  The only restriction,
please: the book should have, or claim to have, some Sabermetric content.

The James Fraser review you’ve just finished reading on this page is exactly the kind of thing we’re looking for.

Send reviews to the usual place (see “Submissions” elsewhere in this issue).  Drop me a line if you want to make sure no other
member is reviewing the same publication, although multiple reviews of the same book are welcome, particularly for major

works.  Let me know which book you’re doing, so I don’t assign the same book twice.

And if you’re an author, and you’d like to offer a review copy, let me know – I’ll find you a willing reviewer.
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Criticism

“Best Teams” Logic Flawed
Clifford Blau

Is it harder to compile an outstanding record against teams of equal mediocrity, or against a combination of extremely bad and extremely
good teams?  An internet-published article says the former, but, here, a study by the author suggests the latter.

During the 1998 season, James Kushner published an article entitled, “The Best Teams in Baseball History.”  (It is available at the Baseball
Prospectus Web site, http://www.baseballprospectus.com/news/19980728kushner.html.)  In it, he attempted to determine which team was
best essentially by comparing the records of all first place teams to the standard deviation of the records of the other teams in their leagues.
As he pointed out in the article, competitive balance has tended to increase throughout major league history, and a .670 record was as hard to
achieve in the 1990’s as a .800 record was in the 1880’s.  By using the standard deviation of the opponents’ records, he believed that he was
accounting for the varying strength of the competition. His premise was that it is harder to achieve an outstanding record in a league with a
lot of mediocre teams than it is in a league with a couple of good teams and a bunch of patsies.

This premise has bothered me ever since I read the article.  While the quality of the opposition clearly affects the difficulty of achieving an
outstanding record, can you measure that quality simply using standard deviations?  The 1906 Cubs were not one of the best teams ever,
according to Mr. Kushner, because they “had two pathetic teams to beat up on (the Cardinals and Braves were both under .400), and two
other teams did break .600, showing that winning wasn't difficult (or, at any rate, unique).”  On the other hand, he rated the 1941 Yankees as
the best ever, in part, because they played in a league with 7 teams whose records weren’t far from .500.  I believe that the final paragraph of
Mr. Kushner’s article reveals the weakness of his method.  In it, he states that the Yankees team of 1998 to that point ranked fourth best of
all time.  Furthermore, if the last place Devil Rays improved their record over the remainder of the season while the second place Red Sox
slipped, the Yankees had the opportunity to be the best team ever.  Reading that, I asked myself, how would Boston losing a series of games
to Tampa make the Yankees a better team?  Obviously, it wouldn’t.

In 1906, the Cubs had a winning average of .763 and the other NL clubs had a collective record of .462.  However arranged, those clubs
would have to have had a collective record of .462.  If the Giants and Pirates had been weaker, and the Braves and Cardinals stronger, would
it have been harder for the Cubs to win 116 games?  To answer this question, I ran a simulation of the 1906 season using a computer game
(Baseball for Windows 1.0).  First I played twenty seasons with the original teams.  The Cubs won between 94 and 118 games each season,
with an average record of .711.  The standard deviation of the other seven teams’ record was .121.  I then evened out the competition by
switching the Giants’ pitching staff with the Cardinals’, and the Pirates’ nonpitchers with those of the Braves.  With these new teams, I
played another twenty seasons.  This time, the Cubs’ record averaged .723, with their wins ranging from 103 to 121.  The other seven teams
had a standard deviation of .031.  While this is far from conclusive, it certainly doesn’t support the idea that a balanced league makes it
tougher to win a lot of games.

This simulation points out another weakness of ranking teams solely on wins.  Luck plays a big role in the number of games a team wins in a
single season.  Most of the teams with the best records in history were probably lucky as well as good.  It is probably better to use other
factors, such as runs scored and allowed, in rating teams, as well as to examine the teams for a period of at least three seasons.

A counterargument might be that a less drastic reordering of talent between the teams might lead to an improvement in the strength of the
teams.  This could occur if the good teams had infrequently used players who were superior to regulars on the poor teams. For example, if
Art Hofman had been on the Cardinals instead of warming the Cubs’ bench,  the overall level of talent in the league would have been
increased.  Also, a great team in a balanced league may not achieve its best possible record without any strong competitors to push it.

Clifford Blau, 16 Lake St. #5D, White Plains, NY, 10603, brak@erols.com ♦

mailto:proboy@ix.netcom.com
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Study

Probability of Performance – A Comment
Rob Wood

In a previous BTN, Mike Sluss introduced “Probability of Performance,” a statistic that represents the chance of a league-average player
achieving an outstanding result.  Here, the author suggests that changing the baseline to a random player, instead of an average player,

gives a more realistic and meaningful result.

Introduction

Mike Sluss (BTN November 1999, BRJ 1999) recently introduced a relatively new method to baseball analysis.  “Probability of
Performance” (POP) is designed to help us determine which of two achievements is more outstanding.  For example which is the more
outstanding batting average: Carl Yastrzemski hitting .301 in 1968 when the AL hit .230, or Bill Terry hitting .401 in 1930 when the NL hit
.303?

Using standard binomial formulas, Sluss calculates the probability that a batter hitting at the league average pace would have a batting
average at least as high as the league leader’s batting average.  For ease in presentation, Mike converts the probability to an inverse
logarithmic scale to arrive at POP.  According to Mike’s method, all that is required is the league leader’s number of hits and at bats and the
league-average batting average (excluding the league leader).

Following the custom of removing pitchers’ at bats, I calculate that Terry’s POP of 6.13 exceeds Yaz’s POP of 3.36, so Terry’s achievement
is deemed more outstanding.  How do we interpret these numbers?  By undoing the logarithmic transformation, Terry’s 6.13 POP means that
the probability of his achievement is roughly 1 in 1.3 million, since the probability of a 1930 NL league average batter hitting at least .401 is
roughly 1 in 1.3 million, using the standard binomial formulas.  Yaz’s POP of 3.36, for comparison, means that the probability of an AL
1968 league average batter hitting at least .301 is only 1 in 2,300.

Well, these probabilities are much smaller than I would have guessed.  After thinking about it for a while1, I realized that these numbers were
correctly calculated from Mike’s formulas.  The problem is that I (mistakenly) thought POP was designed to answer the following type of
question.  What is the likelihood that a 1968 AL batter would hit at least .301?  What is the likelihood that a 1930 NL batter would hit at
least .401?

If this were the “event” for which the probability was to be estimated, I guessed that we would get much larger probabilities.  I asked myself
whether it really is a 1 in a million chance that there would be a .400 hitter in a league that hits over .300?  After all, in the NL 1930 Babe
Herman hit .393, Chuck Klein hit .386, and Lefty O’Doul hit .383.  And Lajoie, Hornsby, Sisler, Cobb, Jackson, Williams, and Heilmann
also hit over .400 in other years.  Terry’s .401 average is not so spectacular compared to these other high averages.

In this article, I want to follow through on my initial concerns about POP.  I will attempt to discover why POP may not be the best or only
measure of the degree of outstanding achievements, at least not in the way that I think of “outstanding achievements.”  Following the
investigation, I will introduce a revised POP formula that provides more reasonable estimates of the likelihood of outstanding achievements
(in my view).

Stylized Example

Before I get back to the real-world of baseball and its statistics, consider the following stylized example of two different leagues.  The
following two tables will present all the relevant data along with Mike Sluss’s POP results (labeled MS-POP).  In addition, I will present the
results of my own revised POP formula (labeled RW-POP) for comparison.

                                                                
1  I also benefited from a lengthy and provocative email dialogue with editor Phil Birnbaum; in addition I want to thank peer reviewers who
provided comments on a draft of this article.
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Player A, the leader in League 1, hit .310 in
a league that hit .254 (removing his own at
bats).  This leads to an MS-POP of 2.56,
indicating a 1 in 360 chance.  My own
formula, described below, RW-POP is 2.54
in this league, or a 1 in 350 chance.  Let’s
consider MS-POP and RW-POP to be
equivalent in this league.

Player F, the leader in League 2, hit .308 in a
league that hit .240 (removing his own at
bats).  This leads to an MS-POP of 3.50,
indicating a 1 in 3,200 chance.  Do we really
believe that player F’s achievement is that
rare?  (After all, player G did hit .300.)  By
comparison, RW-POP is 0.92 in this league,
indicating a 1 in 8 chance.

To recapitulate, MS-POP is significantly
higher in league 2 than in league 1 and
therefore deems player F to be more
outstanding than player A.  On the other
hand, RW-POP is significantly higher in
league 1 than in league 2, and therefore deems player A to be more outstanding than player F.  Which is “right”?

Please take a look again at the two leagues.  I would guess that 99 out of 100 people would say that player A’s achievement is more
outstanding than player F’s.  In league 1, player A is head and shoulders above everyone else in the league, whereas in league 2, there is a
much greater diversity of performance and indeed player G does just about as well as player F.

Another way to say the same thing is to ask which method gives more reasonable answers.  Looking at the data for players G, H, and J in
league 2, what would you think is the likelihood of player F hitting .308?  Do you think it around 1 in 3,200 or around 1 in 8?  I think most
people would say around 1 in 8.  In any event, I am sure nearly everyone would say that player A had the more outstanding achievement
compared to player F, and a method that claims otherwise needs to be looked into.

So what is going on?  MS-POP only looks at the league average and ignores the spread and all the rest of the players.  Thus, MS-POP is
more impressed by player F in league 2 (the low average, high standard deviation league) than player A in league 1 (the high average, low
standard deviation league).  In my opinion, this can lead to results that are at odds with what we commonly mean by an “outstanding
achievement.”

Analysts have wrestled with these issues for years.  David Shoebotham, Merritt Clifton, and Ward Larkin, separately in the 1970’s and
1980’s, developed “relative” baseball methods that we still use today.  They considered several different methods.  One is to compare the
league leader to the league average (essentially Mike Sluss’s method); another is to compare the league leader to the runners-up; and others
attempt to take into account the spread (standard deviation) among all players.  Following in this tradition, I will introduce a version of POP
that takes into account the entire distribution over all players.

Revised POP (RW-POP)

By reconsidering the original intent of POP, I will revise the MS-POP formula.  We will see that the new formula (RW-POP) does not suffer
from any of the concerns mentioned above.  There is a price to pay, however.  MS-POP is fairly easy to calculate.  All that is needed is a
league average and the league leader’s performance.  RW-POP, on the other hand, will require the performances of each player in the league;
today, though, this data is widely available in electronic form.

Let me characterize the original intent of POP as a desire to answer the following question.  What is the likelihood that a player will achieve
the league leader’s batting average?  Mike Sluss operationalized this question by asking: “what is the likelihood that a player hitting at the
league average pace would achieve the league leader’s batting average?”

League 1

Player H AB  Avg
A 155 500 .310
B 128 500 .256
C 127 500 .254
D 126 500 .252

League 2

Player H AB Avg
F 154 500 .308
G 150 500 .300
H 120 500 .240
J 90 500 .180
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I wish to argue that this operationalization is where POP is open to question.  By considering the hypothetical league average batter, it is
easy to see that POP’s probabilities will be very small.  It’s like asking: “what is the likelihood of the league average batter leading the
league?”  Very small indeed.

I will operationalize my characterization of the original intent of POP by asking a different question.  What is the likelihood that a player
chosen at random would achieve the league leader’s batting average?  This question seems to me to be more directly related to the original
intent of POP.2

For comparison to what will follow, I present Mike Sluss’s original formulas:

MS-POP

MS- POP MS- POP

prob
M
M

L
i

L
ABM i

i HM

ABM AB
i AB i Avg Avg

prob
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= − −∑

= −

!
( !)( )!( ) ( )' '

log ( )

1

10

where H is hits, AB is at bats, the subscript L’ refers to the entire league (excluding the league leader), M refers to the league leader, and
“Avg” refers to batting average.  Of course, POP can be calculated for any “rate” variable in baseball such as batting average, on base
average, walk rate, home run rate, etc.; I suppose POP could also be applied to slugging percentage, though SLG is not truly a rate.

The formulas for RW-POP, given below, are straightforward extensions of the MS-POP formulas.  In words, I calculate the likelihood of
each player in the league achieving the league leader’s batting average, and then weight these likelihoods by the player’s at bats.  I then
convert over to the inverse log 10 scale for ease in presentation, though this is less necessary now since the probabilities are more
reasonable.  (If anyone is interested, I would be happy to pass on my APL programs.)

RW-POP
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To get a sense of how this works, let’s walk through how MS-POP and RW-POP are calculated for stylized league 2 above.  The likelihood
that player G (the .300 hitter) would hit at least .308 in 500 at bats is .3642; the likelihood that player H (the .240 hitter) would hit at least
.308 is .0003; and the likelihood that player J (the .180 hitter) would hit at least .308 is virtually nil.  Taking the weighted average of these
probabilities, weighting by the player’s at bats, yields the RW-POP prob of .1215 (about 1 in 8).

On the other hand, MS-POP calculates that the likelihood that a batter hitting at the league average pace (.240) would hit at least .308 in 500
at bats is .0003, or about 1 in 3,200.

MS-POP vs. RW-POP

The reason why MS-POP and RW-POP give different answers is due to inherent non-linearities.  As seen above, the binomial likelihood of
achieving a specific batting average is a highly non-linear function of the assumed fixed pace.  The likelihoods to hit .308 presented above
were seen to be .3642, .0003, and 0, for the hitters who had .300, .240, and .180 averages, respectively.

Since MS-POP calculates the likelihood using the average average, MS-POP’s probabilities will always by much less than the average
probability considering each player’s likelihood (as done by RW-POP).  And when converted to the inverse log 10 scale, MS-POP will
always be much greater than RW-POP.  Colloquially, MS-POP considers the average player and calculates the likelihood of the average,
whereas RW-POP considers the random player and calculates the average likelihood.

                                                                
2  The crux of the matter is the difference in our definitions of an “outstanding achievement”.  Unfortunately, there does not appear to be any
objective way to determine the proper definition of such a slippery concept.
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As stated above, I believe that at their heart MS-POP and RW-POP are designed to answer the same question.  However, they go about it
somewhat differently since they make different (implicit) assumptions.  An unavoidable task when we ask ourselves how rare an event is is
to determine the “alternative” outcomes.  In our case, when we are interested in estimating how rare is the achievement of the league leading
batter, we must ask ourselves what we “expected” the league leader to have hit, before we knew he actually led the league.3

My view is that MS-POP implicitly assumes that the “prior” probability distribution for the league leader’s performance is given simply by
the league average.  This is tantamount to assuming that all players in the league have equal abilities.  To be clear, I am not saying that Mike
Sluss actually believes this; however, his formula would provide the “correct” answer if players were all of equal ability.

On the other hand, RW-POP implicitly assumes that the “prior” probability distribution for the league leader’s performances is given by the
other players’ performances in the league.  This is tantamount to assuming that batting averages reflect true abilities in the league’s players.4

While it can be argued that both assumptions are rather extreme, I think almost everyone would agree that the assumption underlying RW-
POP is much more reasonable. After all, we do not really believe that Tony Gwynn and Mario Mendoza are equally good hitters, do we?  It
is much more reasonable to assume that there is a distribution of hitters’ batting averages throughout the league, and this distribution (not
just the average) provides the context in which to properly measure achievement.5

The stylized example given above showed that this distribution can affect how “outstanding” we deem an achievement.  Accordingly, a
formula such as RW-POP that takes into account this distribution may often produce a more reasonable result than a formula such as MS-
POP that does not.

Terry vs. Yaz

Now that we have a new toy, let’s try it out by returning to Bill Terry and Carl Yastrzemski.  This duo exemplifies the need to consider
performance in the proper context.  Recall that we would like to compare Terry’s .401 average in NL 1930 to Yaz’s .301 average in AL
1968.  Given that non-pitchers hit .312 in NL 1930 as compared to .238 in AL 1968, which was the more outstanding achievement?

According to MS-POP, Terry’s achievement (MS-POP of 6.13) was a 1 in 1.3 million chance.  Yaz’s achievement (MS-POP of 3.36) was a
1 in 2,300 chance.  By this measure Terry’s achievement was far more outstanding, approximately 600 times more unlikely, than Yaz’s.  I
began the article by questioning these results, since they are at such odds with my intuition.  Recall that Shoebotham recommended the ratio
of the league leader’s average to the league average.  Doing that here shows Terry to be 28.5% better than league average, and Yaz 26.5%
better.  This result matches my intuition much better than the results of MS-POP given above.6

Let’s see how RW-POP sees Terry vs. Yaz.  According to RW-POP, Terry’s achievement (RW-POP of 1.72) was a 1 in 52 chance.  Yaz’s
achievement (RW-POP of 1.47) was a 1 in 30 chance.  As I said above, don’t these likelihoods seem more “reasonable” than a 1 in a million
probability?7  Even by RW-POP, we still see that Terry’s achievement is deemed to have been more outstanding than Yaz’s, but is now
considered only about 2 times more unlikely.

The large differences between MS-POP and RW-POP make me guess that the all-time seasonal and career rankings by the two measures are
undoubtedly different.  It would be interesting to see how the two methods compare and contrast throughout baseball history.

                                                                
3  In Bayesian statistics terminology, this is the “prior” probability distribution.
4  This assumption introduces a bias into RW-POP since players who have had good years are likely to have been “lucky” and performed
above their own “prior” expected levels.  Per Phil Birnbaum’s suggestion, I ran a simulation of 100 leagues each having 100 players who
each get 500 at bats using a reasonable distribution for “true” batting averages.  The average RW-POP using true batting averages is 1.44,
compared to the average RW-POP using the observed batting averages of 1.86.  (Using the same data, the average true MS-POP was 4.19
and the average MS-POP using observed batting averages is 4.24.)  This bias in the RW-POP calculation is not likely to vary much over
time, and therefore is unlikely to affect cross-era comparisons using RW-POP, and in any event would not be easy to eradicate.  In
comparison to the difference between MS-POP and RW-POP, the bias in RW-POP is small.
5  Stated another way, Mike Sluss’s version of POP implicitly attributes all the difference between the league average and the league leader’s
average to luck; whereas my method implicitly assumes that none of this difference is due to luck.
6  In addition, according to my back-of-the-envelope estimate, Terry and Yaz each were roughly 3 standard deviations above their league
average.
7  To be clear, MS-POP is a valid probability and I am not questioning its underlying math.  I am questioning whether the event for which it
is calculated, the league average hitter leading the league, is a particularly meaningful event in baseball terms.
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Concluding Remarks

In this article, I have raised concerns about Mike Sluss’s Probability of Performance (MS-POP) measure.  Mike has made a significant
contribution to baseball analysis.  His concept is great.  I have argued, however, that his operationalization of the concept may be open to
debate and alternative renderings.  MS-POP considers only the league average batting average, and thereby narrowly defines an “outstanding
achievement.”

By considering all players in the league, not just the league average player, I have developed a revised version called RW-POP.  It requires
data on each player in the league; however, this data is readily available (e.g., via Sean Lahman’s website).  RW-POP asks what is the
likelihood that each player in the league would achieve the league leading performance, and then weights these likelihoods by the player’s at
bats.  In this way, the formula can take into account the diversity of the performances, including the outstanding performances of runners-up.
Accordingly, RW-POP has a slightly broader definition of an “outstanding achievement.”

I have shown that the probabilities calculated via RW-POP are more “reasonable” than those calculated via MS-POP.  In addition, a stylized
example has shown that RW-POP can be more consistent with our common sense definition of an “outstanding achievement” than MS-POP.

POP is a great idea and I hope it takes hold in baseball research.  As such, I think it merits serious contemplation and investigation.  I hope I
have begun that process in this article.

Rob Wood is a management consultant in California.  Rob Wood, 2101 California St. #224, Mountain View, CA, 94040-1686,
rob.wood@us.pwcglobal.com. ♦
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Analysis

Clutch Teams in 1999
Tom Hanrahan

Long-standing sabermetric results have shown that (a) teams score predictable numbers of runs given their offensive batting line, and (b)
teams win a predictable number of games given their runs scored and allowed.  Teams that overshoot or undershoot their runs or wins

estimates can be said to have been good or poor in the clutch.  Here, the author examines which teams those were in 1999.

Which teams came through in the clutch last season, exceeding the expectation of victories they might have had based on their statistics?
Which teams couldn’t buy a hit at the right time, and consequently had a more disappointing year than they might have had?  This article
attempts to answer these questions.

There are two basic premises on which this analysis is based:

1. The number of games a team will win can be predicted accurately by the number of runs they score and allow.
2. The number of runs a team will score can be predicted accurately when the team statistics of hits, walks, total bases, and steals/caught

stealing are known.

Both of these have been shown to be undeniably true by many students of the game.

Predicting Wins

A well-known formula to predict expected wins, sometimes called the Pythagorean formula, is

Expected Wins = Games Played * runs scored 2 / ( runs scored 2 + runs allowed 2 )

So, if a team wins more games than they “should” have by this formula, we can say they did well in what I will call the “game clutch”
category.  They likely got many timely hits in close games, and maybe their bullpen was effective in “save” situations.

Predicting Runs

There are also common equations used to predict runs scored, many of these developed and/or popularized by Bill James. A version of the
“runs created” formula is 

Expected Runs =  (Hits + Walks – Caught Stealing) * (Total Bases + .52 * Stolen Bases) / (At Bats + Walks)

There are more complicated (and slightly more accurate) versions of this formula, but I chose to use this one because of the ease of finding
and manipulating data for 1999.

Testing

If a team scores more runs than the formula predicts, they did well in the “run clutch” category.  They likely batted well with runners in
scoring position, and cranked their home runs with men on instead of hitting solo shots.

We can measure how many extra games each team won (or lost) by being game clutch directly from the formula, Actual Wins minus
Expected Wins.  We can measure extra games won by being run clutch by finding the difference in expected wins when using the Expected
Runs instead of actual runs scored in the Expected Wins formula.

The chart on the next page gives each team’s offensive statistics, and their extra wins from run clutch, game clutch, and both clutch measures
combined.
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Observations

There is more variation (as measured by the standard deviation) in the game clutch than the run clutch measurement.  In other words, last
year’s results were altered more by hitting well when the game is on the line than by hitting well with runners on base.

By far the worst game clutch team was the Royals.  They scored many more runs than the Cubs and Devil Rays, and allowed about the same
amount, and finished behind them both.  The Royals’ deficiencies in their bullpen last year (more Blown Saves than Saves!) have been
loudly trumpeted by many as the cause of their long year.

The Orioles were the worst American League team in run clutch performance, scoring 32 less runs than they  “should” have.  Additionally,
they were the 2nd worst team in the majors to the Royals in game clutch, winning only 78 games in spite of easily outscoring the opposition.
The table shows the Orioles could have been expected to win 9 more games last season than they actually did win.  Those 9 games would
have made them the 5th best team in the league, with a record of 87-75.  Their team batting average, on base average, and slugging
percentage were all better than the Oakland A’s’, they had more stolen bases, and their pitching and defense allowed fewer runs, yet
somehow they managed to win 5 fewer games. The A’s run at the West title was truly a remarkable one.

There were no significant winners or losers among National League clubs, but the Astros’ “extra” game they won did allow them to steal the
division title from the Reds, whose “extra” loss cost them a playoff appearance.

American League
extra
wins,

extra
wins,

extra
wins,

AB H TB W SB CS RC RUNS RA WINS run
clutch

game
clutch

total
clutch

NY 5568 1568 2521 718 104 57 913 900 731 98 -0.7 0.4 -0.3
Bos 5579 1551 2497 597 67 39 865 836 718 94 -2.2 0.8 -1.4
Clev 5634 1629 2629 743 147 50 985 1009 860 97 2.3 3.2 5.5
Tex 5651 1653 2705 611 111 53 975 945 859 95 -2.1 6.3 4.2
Bal 5633 1572 2522 615 107 46 883 851 815 78 -2.6 -6.5 -9.1
Tor 5642 1581 2582 578 119 48 897 883 862 84 -0.9 1.1 0.2
Oak 5519 1430 2462 770 70 37 859 893 846 87 3.6 1.6 5.2
Sea 5572 1499 2536 610 130 45 869 859 905 79 -0.5 2.2 1.7
Chi 5644 1563 2421 499 110 50 812 777 870 75.5 -3.1 3.6 0.6
Det 5481 1433 2426 458 108 70 761 747 882 69.5 -1.0 1.8 0.8
KC 5624 1584 2435 535 127 39 845 856 921 64.5 1.5 -10.6 -9.1
TB 5586 1531 2296 544 73 49 771 772 913 69 0.5 1.5 2.0
Ana 5494 1404 2170 511 71 45 687 711 826 70 3.1 1.1 4.2
Min 5495 1450 2110 500 118 60 685 686 845 64 0.6 -0.4 0.3

AVGS 843 838 847 80.3 -0.1 0.4 0.3
S DEV 92 90 60 12.2 2.1 4.2 4.5
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Tom Hanrahan, 21700 Galatea St., Lexington Park, MD, 20653, HanrahanTJ@navair.navy.mil. ♦

Get Your Own Copy

If you’re not a member of the Statistical Analysis Committee, you’re probably reading a friend’s copy of this issue of BTN, or
perhaps you paid for a copy through the SABR office.

If that’s the case, you might want to consider joining the Committee, which will get you an automatic subscription to BTN.
There are no extra charges (besides the regular SABR membership fee) or obligations – just an interest in the statistical

analysis of baseball.

To join, or for more information, send an e-mail (preferably with your snail mail address for our records) to Neal Traven, at
beisbol@mediaone.net.  Or write to him at 500 Market St. #11L, Portsmouth, NH, 03801.

National League
extra
wins,

extra
wins,

extra
wins,

AB H TB W SB CS RC RUNS RA WINS run
clutch

game
clutch

total
clutch

Ari 5658 1566 2595 588 137 39 903 908 676 100 0.9 -4.2 -3.4
Atl 5569 1481 2427 608 148 66 820 840 661 103 2.3 3.0 5.3
Cin 5621 1534 2546 565 164 54 870 865 711 95.5 0.0 -1.2 -1.2
NY 5539 1544 2404 709 150 61 871 853 711 96.5 -1.2 0.9 -0.2
Hou 5485 1463 2306 728 166 75 815 823 675 97 1.2 0.1 1.4
SF 5564 1507 2413 696 109 56 847 872 831 86 2.8 1.1 3.9
LA 5567 1480 2340 595 167 68 790 793 787 77 0.7 -4.6 -3.9
Phi 5598 1539 2412 631 125 35 849 841 846 77 -0.3 -3.5 -3.8
Pit 5468 1417 2292 573 112 44 757 775 782 78.5 2.3 -1.8 0.6
StL 5570 1461 2371 613 134 49 799 809 838 75.5 1.4 -2.6 -1.2
SD 5394 1360 2218 631 174 67 737 710 781 74 -2.6 0.7 -1.9
Mil 5582 1524 2378 658 81 33 833 815 886 74.5 -1.4 0.3 -1.1
Col 5717 1644 2696 508 70 43 926 906 1028 72 -1.3 1.2 -0.1
Mon 5559 1473 2376 438 71 51 748 718 853 68 -2.8 0.8 -2.0
Flo 5578 1465 2203 479 92 46 705 691 852 64 -1.1 -0.3 -1.4
Chi 5482 1411 2303 571 60 44 747 747 920 67 0.4 2.6 3.0

AVGS 814 810 802 81.6 -0.1 -0.4 -0.6
S DEV 63 67 100 12.8 1.7 2.0 2.3

BOTH LEAGUES AVGS 828 823 823 81.0 0.0 0.0 0.0
COMBINED S DEV 78 79 86 12.4 1.9 3.3 3.6

Notes:

1. Abbreviations:   TB is total bases, RC is Runs Created (= Expected Runs), RA is runs allowed
1. The teams were put in order of best to worst ratio of runs scored to runs allowed
1. The average team scored 5 less runs in 1999 than predicted by the formula, and so 5 runs were added to the run clutch equation to

force the average to zero.
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Study

How Often Does the Best Team Win the Pennant?
Rob Wood

The best team in the league by talent may not be the team that goes on to the World Series.  Through its own bad luck, or another team’s
good luck, the most talented team may find itself knocked out of the pennant race.  How often does this happen?  Here, the author designs a

simulation to illuminate the issue.

Introduction

I have frequently wondered how good a job baseball does in identifying the best team in the league.  After all, there is a significant amount
of “luck” inherent in baseball.  A line drive can be just foul by inches, a ground ball can be just barely out of the reach of a fielder, many
pitches are borderline balls/strikes, etc.  Countless games can go either way during a season.  154 or 162 game seasons may not be sufficient
to ensure that the pennant winner is fully deserving.

As such, it is unclear that the best team in baseball wins the pennant each season.  In contrast, I have come to believe that the best team in the
league regularly wins the Super Bowl, the NBA championship, and the Stanley Cup1.

Today’s degree of parity is another reason why the best team in the league may not win the pennant (or, equivalently, the pennant winner
may not be the best team).  From a purely statistical point of view, the closer the teams are bunched together in quality, the more likely it is
that the pennant winner was not really the best team in the league.2

In this article, I want to investigate these issues.  I will construct a simulation which adjusts the degree of parity, and then determine the
relationship between the degree of parity and the frequency of the best team winning the pennant.  Finally, based on the simulation results
and the observed degree of parity throughout baseball history, I will estimate how likely it was for the best team in the league to have won
the pennant in different eras.3

Simulation Results

I have constructed a simple simulation of a league-season.  My first set of leagues has 8 teams and plays 154-game schedules, each team
playing the other teams 22 times each during a season, to simulate 1904-1961 baseball.  Each team has an “innate” team winning percentage,
drawn from a normal distribution with mean .500 and a fixed standard deviation reflecting the degree of parity associated with the league.

I use the formula presented by Bill James (originally developed by Dallas Adams, I think) to determine the winning pct of two pitted teams.
Winning Pct (A vs B) = [A*(1-B)]/[(A*(1-B)) + ((1-A)*B)] where A is the innate winning pct of team A (i.e., vs a 500 team) and B is the
innate winning pct of team B.  For example, if a 600 team is pitted against a 400 team, the 600 team is likely to win 69.2%.

Using this formula, I randomly determine the outcome of every game during a 154-game season, and keep track of the overall win-loss
record of each team.  For each specified degree of parity in the league (i.e., the standard deviation of the normal distribution), I simulate
200,000 seasons.

The “best” team is defined to be the team with the highest innate winning percentage; ties are broken randomly if more than one team has the
highest innate wpct.  The pennant winner is the team with the most wins; again ties are broken randomly if more than one team winds up
with the most wins in the league.

8 Teams, 154 Games

Table 1 presents the results for the 8-team simulations.

                                                                
1  These other sports pit team vs. team and therefore allow the spectator to see one team dominate another.  The degree of domination can be
reflected in a short series, even one game.  Such does not appear to be the case in baseball, largely because baseball is a repeated pitting of
batter vs. pitcher (not team vs. team).
2  Parity has many benefits that probably outweigh the “downside” I am investigating here.
3  This article is an extension to an article by Bill James in the 1989 Baseball Abstract.
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The first column of table 1 specifies the degree of parity in the league (the standard deviation of the underlying normal population), given in
terms of winning pct.  Of course, the smaller the spread, the closer the teams are in quality and the more parity is in the league.

The second column presents the
average observed spread in the teams’
winning pcts.  Note that the entries in
the second column are greater than
those in the first column.  There are
two explanations for this phenomenon.
First, in any small sample luck will
play a role, where here “luck” means
normal statistical variation.  Consider
the first entry in the column where the
observed spread is .041.  In this league
all teams have equal abilities (innate
spread of .000).  Of course, it is highly
unlikely that every team in the league
will go exactly 77-77.  The .041
reflects the fact that some teams will
win more than 77 games, and some
teams less, due entirely to luck.4

Second, the way I programmed the
simulation will cause the observed spread to exceed the innate spread.  The innate spreads essentially are valid if the opposition always has a
.500 winning percentage.  However, this is not the case.  For example, suppose there are two teams in the league with innate winning pcts of
.600 and .400.  By the Adams-James formula, we would expect the observed winning pcts of these teams to be .692 and .308 when facing
each other.  Thus, the observed spread will be wider than the innate spread.  Accordingly, the information contained in the table may be
useful for others who perform baseball simulations.5

The third column presents the average winning pct of the pennant winners.  The first row indicates that when all teams are of equal abilities,
the pennant winner typically wins 86 games in a 154-game schedule (as compared to its “expected” 77).  As the degree of parity decreases
and the teams’ abilities are more spread out, the pennant winner wins more games, ultimately winning about 102 games (out of 154) when
the innate spread is .100.

The fourth column presents the percentage of times that the best team in the league turned out to win the pennant, where ties are broken
randomly.  The first row reflects the limiting case; here all teams are of equal abilities, so that the “best” team wins the pennant 1/8th of the
time (12.5%).  In this case, the outcome of each game is essentially a 50/50 coin flip, so that winning the pennant is due entirely to luck.  As
the teams’ abilities are more spread out, the best team wins the pennant more often, ultimately winning over 72% of the pennants when the
innate spread is .100.

12 Teams, 154 Games

Table 2 presents the results for a second set of simulations of leagues with 12 teams, again playing 154 game schedules, each team playing
each opposing team 14 times6.  The results are fairly similar to the previous table.

                                                                
4  If all teams are of equal abilities, each game is essentially a coin-flip, so that the binomial assumptions apply.  The well-known formula for
the standard deviation of the proportion of successes is given by SQRT[p*(1-p)/n], where SQRT denotes the square root.  At p=0.5 and
n=154 games, the formula gives 0.040, as verified by the entry in the table.
5  Clearly, the strength of two factors moves inversely.  The impact of luck is highest when parity is greatest, and the impact of the James-
Adams “log5” formulation is highest when parity is least. By running additional simulations without the log5 formula, I can estimate how
much each of the two reasons contributes to the additional spread.  When the true spread is .000, the “luck” factor is the sole contributor;
when the true spread is .045, luck’s contribution is 60% and the log5 method’s contribution is 40%; when the true spread is .095, luck’s
contribution is 25% and the log5 method’s contribution is 75%.
6  For simplicity, I do not model divisions or playoffs.  I take the pennant winner to be the team with the most wins during the regular season.
Relatedly, I did not simulate 162-game seasons, though the results should be similar.

Table 1 -- 8-Team Simulation (154-game schedule)

Innate Team
WPct Spread

Observed Team
WPct Spread

Avg Pennant
WPct

Frequency Best
Team Wins
Pennant (%)

.000 .041 .561 12.5

.010 .045 .563 20.9

.020 .049 .569 30.0

.030 .055 .577 38.9

.040 .063 .587 46.6

.050 .071 .598 52.9

.060 .080 .610 58.3

.070 .090 .623 63.0

.080 .100 .636 66.6

.090 .110 .649 69.8

.100 .120 .662 72.3
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Actual League Data

I now want to make use of the simulation
results to estimate how likely the best team
won the pennant throughout baseball
history.  As the simulations indicated, a
key determining factor is the spread in the
teams’ winning percentages.  Accordingly,
I tabulated this data in different eras
during the 20th century.

Table 3 presents the actual team spreads.
1904 is the first year I looked at as it was
the first season with a 154-game schedule.
The table generally presents the results by
decade.  I have split the “modern” era into
1961/2-75 as the post-expansion pre-free-
agency era, and 1976-99 as the post-
expansion post-free-agency era.7

Recall that the degree of parity in the league is inversely related to this spread.  Thus, the table indicates that the degree of parity has
increased greatly over time.  In the early decades of the century, the observed spread in team winning percentages was about .100 (15 games
out of 154),
allowing the
typical pennant
winner to win
about 100 games
(out of 154).
Parity has
increased until
now the spread in
teams’ winning
percentages is
around .065 (10
games out of 162),
allowing the
typical pennant
winner to win
about 98 games
(out of 162).

The final column come
pct in 1904-09 was .66
leagues) tells us that th
best team can be expec

Generally speaking, th
1961/2.  A couple of ro
expansions further low

                                    
7 The table excludes sh
winner is taken to be th

Table 2 -- 12-Team Simulation (154-game schedule)

Innate WPct
Team Spread

Observed Team
WPct Spread Avg Pennant WPct

Frequency Best
Team Wins
Pennant (%)

.000 .041 .568 8.3

.010 .044 .571 15.3

.020 .048 .576 23.8

.030 .053 .585 32.4

.040 .060 .596 40.0

.050 .069 .608 46.7

.060 .077 .621 52.3

.070 .085 .634 57.1

.080 .095 .649 61.4

.090 .105 .663 64.8

.100 .115 .677 67.8
Table 3 -- Team WPct by Decade

Period
Teams in
League

Avg Pennant

WPct1 Team WPct Spread

Implied Pct Best
Team Wins

Pennant
1904-09 8 .660 .118 72
1910-19 8 .648 .100 70
1920-29 8 .627 .091 65
1930-39 8 .640 .099 68
1940-49 8 .636 .093 67
1950-61/2 8 .626 .089 65
1961/2-75 10-12 .613 .070 49
1976-99 12-16 .608 .065 46
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s from the previous simulation tables.  For example, the first row indicates that the average pennant winner’s winning
0, with a typical spread in team winning pcts of .118.  Looking at our first simulation table (the results for the 8-team
ese data are consistent with a spread among the teams’ “innate” winning pcts of about .100.  And in such a league, the
ted to win the pennant about 72% of the time.

e table tells us that about 65-70% of the time the pennant winner was likely to be the league’s best team from 1904-
und of expansions lowered this to about 50% in 1961/2-75.  Free agency and a couple additional rounds of
ered this percentage to about 45% today.

                            
ortened seasons such as 1918, 1994, 1995, and the first year following each league expansion.  Also, the “pennant”
e team with the best regular season record in each league.
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Comparison to Bill James’ Study

In the 1989 Baseball Abstract, Bill James presented a study very similar to this one.  James performed a simulation to investigate the impact
of “luck” on a team’s won-loss record.  He simulated 1,000 seasons of 162 games each with 12 and 14 team leagues, and each league broken
into two divisions.  He found that the best team in a division only won 54.6% of the division titles, a “surprisingly low” percentage.  James
found that the observed spread in team’s winning percentages exceeded the “true” spread, as my tables confirm.  James basically had two
main conclusions.  First, luck plays a large role in a team’s won-loss record.  Second, and related, predicting division or pennant winners is a
difficult task.

Due to increases in computing power, my simulations were over 200,000 seasons instead of 1,000, so we can be sure that the results are
valid.  In addition, my simulations are based upon a parametric distribution of team winning percentages that can easily be varied.8  My
results are consistent with James’s article.  I too find that the best team only wins the pennant about half the time in today’s baseball.  My
tables of results according to the degree of parity in the league may be useful to other researchers as well.  Finally, I tied my simulation
results to the historical degree of parity to estimate the likelihood that the best team in a league won the pennant throughout baseball history.

Concluding Remarks

Parity has brought with it many important benefits.  Teams no longer languish in the second division for extended periods like they used to
in the “good old days”.  Today, due to the cumulative effects of the draft, free agency, expansion, and revenue sharing, most teams can
expect to compete for their division title in any given season.  Recall that from 1978 to 1987, 10 different teams won the World Series, and
in the past twenty seasons there have been 15 different World Champs.  Fans stay interested over time and deeper into seasons.

However, from a purely statistical point of view, increased parity has the negative consequence of allowing inferior teams to make the
playoffs and ultimately win the pennant.  Using simulation analysis and a historical review of teams’ winning percentages, I estimate that the
best team in the league was likely to win the pennant more than 70% at the beginning of the 20th century.  The increased degree of parity
exhibited in today’s era has driven this percentage below 50%.  Today, the team with the best record in the league is less than 50% likely to
be the best team in the league.

Rob Wood is a management consultant in California.  Rob Wood, 2101 California St. #224, Mountain View, CA, 94040-1686,
rob.wood@us.pwcglobal.com. ♦

                                                                
8  I sample from a normal distribution.
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