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Review

“Curve Ball:” How to Think Like a Statistician
Charlie Pavitt

While “Curve Ball” is more statistical than sabermetrical, it is nonetheless sabermetrics’ “best book-length effort to date,” the author
writes in this review.

For more than fifteen years now, if anyone were to ask me where
to go for a good introduction to or review of sabermetric
research, I had only one answer: Thorn and Palmer's The Hidden
Game of Baseball.  There were no alternatives.  That is, until
now.  Albert and Bennett's Curve Ball will stand aside The
Hidden Game as a must-read for anyone interested in statistical
baseball research.

Let me begin by
discussing Curve
Ball's intent.  As the
authors admit on page
343, it "is not...a
complete guide to
sabermetrics."  This is
certainly the case; in
fact, the authors have
only a few things to
say about pitching and
nothing at all about
fielding.  Yet, when then they claim it to be merely "a l
connected collection of quantitative essays on baseball 
Albert and Bennett have shortchanged their effort.  In m
what Albert and Bennett have attempted and, with only
of exceptions, succeeded in doing is showing the reade
think like a statistician when analyzing batting data.  Th
learning about methods for evaluating offensive perform
simultaneously learns about means and standard deviat
probability distributions and confidence intervals, regre
equations and standard errors, and the logic of statistica
inference and hypothesis testing.  Another of my favori
sabermetric books, Willie Runquist's Baseball By The N
(not to be confused with this newsletter), has a similar i
does not perform the task quite as systematically.  In fa
aspect of Curve Ball that I prefer to The Hidden Game 
former is a general argument for a particular way of thin
about baseball data whereas the latter is a specific argum
particular method (Linear Weights).  From a pedagogic

standpoint, I do believe the authors erred in not introducing the
correlation coefficient when describing the relationship among
indices, although they use it on page 108.  Otherwise, I could
literally see their book being used as a statistics textbook for
physical education majors and other students who find the
baseball content interesting and understandable.  One further
service this book provides is lucid descriptions of research
previously published in statistics journals in forms

incomprehensible
even to a reader with
standard social
science statistics
training (if I am
indeed representative
of that group).

The book begins
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underlying well-known table-top baseball games which will
fascinate anyone familiar with those games (the two with which I
grew up, All-Star Baseball and APBA, are well represented).  In
Chapters 2 and 3, Albert and Bennett use simple offensive (BA,
SA, OBA) and pitching (K, BB) data to introduce basic statistical
concepts.  Chapter 4 includes a nice discussion of Albert's
previously published work on situational effects while teaching
the reader about the logic of model testing.  Chapters 6 and 7
read at first as mere reworkings of the Thorn and Palmer
comparisons among indices for measuring offense (Runs
Created, Total Average, Linear Weights, etc.), but function as
lead-ins to some very thoughtful comparisons among these
indices, in Chapter 8 going well past The Hidden Game’s
presentation.  Chapter 9 does a nice job of considering clutch
play in the context of more general ideas about measuring
performance.  Chapter 10 considers methods for predicting the
odds of attaining batting milestones, both single year and career;
in the latter case, it would have been nice to see them evaluate
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the James/STATS methods discussed in each year's Major
League Handbook.  Chapter 11 looks at the odds of winning the
World Series for teams of differing skill levels.  In an afterword,
the authors emphasize the role of chance in determining player
and team performance outcomes.

There is, unfortunately, one big clunker here; the authors’
treatment of batting streaks in Chapter 5.  Rather than presenting
a general analysis of batting data, they examine the pre-All Star-
break 1999 batting record of Todd Zeile, which was unusually
inconsistent over time during those months.  This can lead the
reader to conclude that there is good evidence for streakiness as a
general characteristic, when in fact existing research suggests that
only select players, if any, exhibit non-random streakiness.  The
problem, which has cropped up in earlier work (their response to
Albright's work in Volume 88 of the Journal of the American
Statistical Association), is that Albert and Bennett are biased in
favor of the existence of streaks and slumps beyond random

variation for a non-statistical and, I must add, very bad reason.
As basketball players in their youth, they perceived themselves as
"having the hot hand" on days that they made their shots and "out
of rhythm" on days they missed, and claim that as evidence that
"a hot hand refers to a feeling -- it's an intrinsic characteristic of
our shooting ability" (page 144).  Social psychological theories
such as cognitive dissonance and self-perception explain quite
well our tendency to label ourselves consistently with our
perceptions of our behaviors ("I hit a few shots early, so I must
be hot today"), and how such perceptions may persist even when
subsequent behavior should disconfirm them.  In other words,
Albert and Bennett's "feelings" are easily-explained
psychological biases which likely have little basis in reality.

I can only hope that readers of this book do not trust the authors'
comments in this regard.  I also hope that every reader of this
newsletter has the opportunity to read this book.  It is probably
our little discipline's best book-length effort to date.

Charlie Pavitt, 812 Carter Road, Rockville, MD, 20852, chazzq@udel.edu ♦

Get Your Own Copy

If you’re not a member of the Statistical Analysis Committee, you’re probably reading a friend’s copy of this issue of BTN, or
perhaps you paid for a copy through the SABR office.

If that’s the case, you might want to consider joining the Committee, which will get you an automatic subscription to BTN.
There are no extra charges (besides the regular SABR membership fee) or obligations – just an interest in the statistical

analysis of baseball.

To join, or for more information, send an e-mail (preferably with your snail mail address for our records) to Neal Traven, at
beisbol@alumni.pitt.edu.  Or write to him at 4317 Dayton Ave. N. #201, Seattle, WA, 98103-7154.

E-mail Changes

If you normally receive “By the Numbers” by e-mail, but you found this issue in your physical mailbox instead, it’s probably
because your e-mail address changed.  If you’d like to switch back to an e-mail BTN, please drop me (Phil) a line with your new

e-mail address, and I’ll switch you back to the electronic version.
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Analysis

Ichiro and the MVP
Duke Rankin

Ichiro Suzuki’s selection as American League MVP was one of the most contoversial in recent memory – in on-base plus slugging, one of
the premier measures of offensive performance, he ranked a large 299 points behind league leader Jason Giambi.  In this article, the author

puts the 299-point discrepancy in historical context, and then analyzes whether other aspects of Ichiro’s performance help his case.

I don’t know what happened to your blood pressure when Ichiro Suzuki won the 2001 AL MVP, but I, for one, was so tired of the Itchy for
Superman mantra that I had to be restrained.  Sure, Suzuki led the league in BA and steals, and in addition played gold-glove defense.  But
he also hit for little power, seldom walked, and played a corner position.  Suzuki’s OPS total was 299 points behind Giambi, the league
leader.  Given a choice between Giambi and Suzuki, who deserved the award?

To structure this analysis, I asked the following questions:  First, how often do players 299 OPS points behind the league leader win the
MVP?  And second, is it possible that other aspects of Ichiro’s game could counterbalance this disparity?

The historical context

For each major league season beginning in 1931, I compared the MVP to the league leader in OPS.  Although MVP votes predate the study,
the 1931 season was both the first year of the present BBWAA voting system, and a reasonable approximation of the lively ball era.  When a
pitcher won the MVP vote, I substituted the highest vote getter among position players.

Only 12 BBWAA votes
(n = 142; 71 in each
league) exhibit OPS
differentials of 200
points or greater (Table
11).  The 299 point
differential between
Suzuki and Giambi is the
fourth highest in the
history of the BBWAA
vote.

In general, catchers and
middle infielders were
the beneficiaries of the
voting.  Only two corner
outfielders received the
MVP when trailing the
league leader by 200 or
more OPS points:  Pete Rose

The 1934 vote sets the patter
hitting corner defender on a 
pitchers both won over 20, b
Hank Greenberg was a great
the league in BA, fifth in RB
star who hit .320, as the MV

                                             
1 Data in this and other tables ar
Table 1:  Largest OPS disparities between the the MVP and the league
leader

Year MVP pos  OPS Leader pos OPS difference
1934 Cochrane c  .840 Gehrig 1b 1.172 332
1962 Wills ss  .720 F. Robinson rf 1.045 325
1944 Marion ss  .686 Musial rf  .990 304
2001 Suzuki rf  .838 Giambi 1b 1.137 299
1954 Berra c  .855 T. Williams lf 1.113 258
1942 Gordon 2b  .900 T. Williams lf 1.147 247
1960 Groat ss  .765 F. Robinson 1b 1.002 237
1931 Frisch 2b  .764 Hornsby 2b  .996 232
1955 Berra c  .819 Mantle cf 1.042 223
1947 DiMaggio cf  .913 T. Williams lf 1.133 220
1941 DiMaggio cf 1.083 T. Williams lf 1.286 203
1973 Rose lf  .838 Stargell lf 1.038 200
2002 Page 3

 in 1973 and Ichiro Suzuki in 2001.

n:  a light-hitting (but high BA) middle defender on a championship team winning the award over a heavy-
non-champion.  Led by Greenberg, Gehringer, Bridges and Rowe, the Tigers won the pennant by 7 games.  The
ut Lefty Gomez of the Yankees was better, leading the league in wins, winning percentage, innings and ERA.
 player but Gehrig posted better numbers, winning the triple crown.  Charlie Gehringer was brilliant – second in
I, excellent in the field – but lacked the gaudy power numbers.  That apparently left Cochrane, an established
P.

                   
e from www.baseball-reference.com unless otherwise noted.
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The 1944 MVP illustrates a second recurrent theme in the data:  the absence of a clear-cut MVP candidate.  The Cardinals won three
pennants between 1942 and 1944.  Their two best players – Mort Cooper and Stan Musial – had already been honored, winning MVPs in
1942 and 1943.  In 1944, Musial’s power numbers were down – 12 dingers and 94 RBI.  Cooper pitched very well – 22 wins and the third
best ERA in the league – but had posted better numbers in the past.  Marion did not distinguish himself statistically -- he hit for a reasonable
average but no power, rarely walked and stole very few bases, fielded adequately but not as well as the best shortstops in the league.  The
wartime National League of 1944, however, contained very few MVP candidates.  Dixie Walker led the NL in hitting, but he played for the
seventh-place Dodgers and posted numbers almost identical to Musial.  Bill Nicholson led the NL in dingers, runs and RBI for the fourth-
place Cubs, but he failed to hit outside the war years.  Bucky Walters pitched well for the third-place Reds, but posted numbers very similar
to Mort Cooper.  A gritty shortstop on the championship team was probably a good choice.

Yogi Berra received two MVPs despite differentials of over 200 points, but Berra’s value should not be underestimated.  During the seven
years between 1949 and 1955, Berra was arguably the best defensive catcher in the AL, leading the league in assists three times and double
plays five times.  In addition, the Yankees led the league in ERA three times.  Offensively, no one was close.  In 1955, Berra hit .272 with 27
dingers and 108 RBI.  The next best catcher, Sherm Lollar, hit .261 with 16 dingers and 61 RBI.  In 1954, it was Berra with a .307/22/125
performance, Sammy White only .282/14/75.  In 1951, Berra was .294/27/88, and Jim Hegan .238/6/43.  Berra simply dominated AL
catchers.

Ted Williams appears on the ‘screwed’ portion of Table 1 four times, and it’s difficult to escape the conclusion that this was, to some degree,
a reflection of the personal animosity between Williams and the BBWAA.  Williams led the AL in OPS ten times but won only two MVP
awards; Williams had seven seasons where he led the MVP winner by over 100 OPS points.  The 1947 vote was the famous one in which
Williams won the triple crown, but lost the MVP by one point because two writers from the Boston area left Williams completely off their
ballots.

The most suspect MVP vote, however, occurred in 1962, when Maury Wills mesmerized baseball by stealing 108 bases, breaking Ty Cobb’s
1915 record of 96.  In reality, Wills wasn’t very good.  Although he hit .299, Wills had only 29 extra base hits and 51 walks in 695 AB.
Defensively, he was terrible:  below average in range factor, next to last in errors, and tied for last in fielding percentage (though he
inexplicably received the Gold Glove).  Unlike the Marion MVP in 1944, the NL had several excellent candidates:  Willie Mays played on a
champion, led the league in dingers, placed second
in RBI, and was probably the best defensive
outfielder in the league.  Tommy Davis led the
league in hitting and RBI; Frank Robinson led in
OPS; and Don Drysdale won 25 and led the league
in innings and strikeouts.  Any of those guys
would have done just fine.

Since 1931, eleven right fielders have won the
MVP without leading their league in OPS (Table
2).  Three other right fielders were the top vote
getters among position players.  Six MVP right
fielders finished at least 100 OPS points behind
the league leader:

1. In 1958, Jackie Jensen finished 111 points
behind OPS leader Ted Williams.  Jensen led
the AL in RBI, but the MVP should have
gone to Mickey Mantle, who played on a
champion and led the league in dingers,
bases, walks and runs.

2. In 1966, Clemente finished 131 points behind
OPS leader Dick Allen.  Allen led the league
in home runs and RBI, but played only 137
games in the field.  Clemente put up pretty
good numbers himself – 29 dingers and 119
RBI.  In addition, Clemente was as famous for his defensive skills as Allen was for his emotional baggage.

3. In 1961, Roger Maris finished 156 points behind OPS leader Norm Cash.  Maris hit for the asterisk as the Yankees crushed the
American League.

Table 2:  OPS for MVP right fielders vs. OPS for league
leader

Year MPV OPS Leader Difference
2001 Suzuki Giambi 299
1998 Sosa McGwire 198
1996 J. Gonzalez McGwire 187
1961 Maris Cash 156
1966 Clemente Allen 131
1958 Jensen T. Williams 111
1968 Rose* McCovey 62
1998 J. Gonzalez Belle 59
1957 Aaron Musial 56
1934 P. Waner* Collins 40
1974 Burroughs Allen 37
1942 Slaughter* Ott 6
1988 Canseco Boggs 5
1960 Maris Mantle 5

Asterisk indicates position player with highest MVP vote (if pitcher was MVP).
Years listed are those for which the OPS leader and MVP are different.
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4. In 1996, Juan Gonzalez finished 187 points behind OPS leader Mark McGwire.  Gonzo put up pretty good numbers for the division
champion Rangers – second in slugging, second in RBI, fifth in dingers – while McGwire finished a mysterious seventh in the voting.

5. In 1998, Sammy Sosa finished 198 points behind Mark McGwire.  McGwire hit 70 dingers, but Sosa hit 66 dingers of his own and led
the league with 158 RBI and 134 runs.

6. Finally, in 2001, Suzuki finished 299 points behind Giambi.

Giambi and Suzuki:  a direct comparison

The historical context suggests the 299 OPS disparity between Suzuki and Giambi is unusual but not necessarily unprecedented.  Is it
possible that other aspects of Suzuki’s game can compensate for the OPS disparity?  First, however, we should place the 299 point disparity
into a context.  A simple comparison:

 OBP  SLG   OPS
Giambi .477 .660 1.137
Suzuki .381 .457 0.838
Somebody else .245 .262 0.507

Some of you may recognize the “somebody else” line as the career totals for Mario Mendoza, the legendary shortstop who created the
Mendoza line, the point at which a player hits so poorly that no level of secondary statistics or locker room presence can justify a starting
job.  Mendoza finished his career 331 OPS points behind Suzuki’s 2001 season.  Suzuki hit almost as poorly compared to Giambi as he hit
successfully compared to Mario Mendoza.

Bill James (1984 Abstract, pp. 189-191) has written a cautionary tale about creating a single statistic to evaluate ballplayers; it should be
required reading for fledgling sabermetricians.  But what if, for the sake of argument, we adjust OPS by adding estimates of performance
from other areas in which Suzuki is clearly superior to Giambi?  Here are the adjustments:

Defense

Suzuki’s defensive statistics were arguably the best among AL right fielders (Table 3).  Chris Richard actually led the league in range factor
and fielding percentage, but played only 69 games in right field.  Among right fielders with at least 90 games, Suzuki led the league in range
factor and fielding percentage.
Suzuki’s assists, double plays
and zone rank were close to
league average.

The mean range factor for
right fielders was 2.09 chances
per game.  Suzuki’s range
factor was 0.26 chances per
game higher than the mean,
suggesting that, over the
course of the season, Suzuki
caught 40 balls more the
average right fielder.  Suzuki’s
0.26 range differential is also
quite similar to the career
marks for right fielders such as
Roberto Clemente (0.23) and
Hank Aaron (0.20).  Of course,
Aaron’s career mark includes
105 outfield games at age 39 --
at Suzuki’s age of 27, Aaron
was 0.67 chances

Table 3:  Defensive statistics for 2001 AL right fielders

Player Team G  PO A E DP    FP  RF   ZR
Salmon ANA 125 253 13 3 5  .989 2.20 .872
Richard BAL  69 155 5 0 1 1.000 2.68 .824
Nixon BOS  83 141 3 5 3  .966 1.97 .919
Ordonez CHW 155 285 11 5 0  .983 2.01 .863
Gonzalez CLE 119 214 10 3 3  .983 2.06 .906
Encarnacion DET  63 121 3 2 0  .984 2.11 .929
Dye KAN  92 175 6 3 0  .984 2.05
Lawton MIN  67 129 4 2 1  .985 1.99 .887
O’Neill NYY 130 210 1 4 0  .981 1.74 .856
Dye OAK  61  96 7 3 1  .972 1.72 .911
Suzuki SEA 152 335 8 1 2  .997 2.35 .877
Grieve TAM  64 117 0 3 0  .975 1.95 .885
Ledee TEX  60 110 1 3 0  .974 2.23 .906
Mondesi TOR 149 263 19 8 2  .972 1.92 .828

ZR scores from http://sports.espn.go.com
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per game above the league average.

Suzuki also throws well.  To estimate the number of outs created with his arm, I added his assists to his double plays and divided the total by
games played.  Suzuki’s ‘arm index’ was 0.0658 plays/games, good for 9th in the AL (Tim Salmon led the league with 0.144 plays/games),
and slightly below the AL mean of 0.080 plays/game.  Over the course of the season, Suzuki threw out three fewer base runners than the
average right fielder.

Finally, Suzuki committed only one error.  Over the course of the season, Suzuki caught 5 balls that other outfielders would have misplayed
into an error.  Combining range, arm and fielding percentage, Suzuki’s defense contributed approximately 42 more outs than the average
right fielder.

Giambi’s defensive statistics are not as good as Suzuki’s (Table 4).  His range factor compares favorably with the AL mean of 9.39
chances/game.  Most plays at first, of course, involve catching throws from infielders.  Bill James (1983 Abstract) uses assists per game as a
measure of range at first base.  Giambi’s assist/game ratio of 0.55 is 0.09 assists below the league mean of 0.64.  Over the course of the
season, Giambi made 14 fewer assists than the average first baseman.  Giambi’s fielding percentage of .992 is almost exactly the league mean
of .993 -- a difference of one error over the course of the season.

By implication, Giambi is also unable to field balls that an average first baseman would turn into unassisted putouts.  For the sake of
argument, I’m guessing the magnitude is about the same as the assist total: 14 balls per season, or a total of 28 plays per season that the
average AL first baseman would have made.  In all, the defensive difference between Suzuki and Giambi is approximately 70 catches per
season compared to average players at the same positions.

How to add this to OPS?
I will attempt to convert
Suzuki’s defensive
contributions into
offensive contributions.
First, I will assume
preventing a single is the
functional equivalent of
hitting a single:  for each
single Suzuki saves
defensively, I will award
him an extra single
offensively.  Some of the
balls batted past first
basemen and right
fielders, however, would
go for extra bases.
Without any data on the
subject, I’m guessing the
number of singles would
equal the number of
doubles:  for 70
defensive plays, 35
singles and 35 doubles.
To adjust Suzuki’s OPS, I will add 70 base hits and 105 total bases to Suzuki’s batting line:

  AB   H  TB BB   BA  OPB  SLG  OPS
Before 692 242 316 30 .350 .381 .457 0.838
Adjusted 692 312 421 30 .450 .477 .608 1.085

Table 4:  Defensive statistics for 2001 AL first basemen

Player Team   G   PO   A  E  DP   FP   RF   ZR
Spiezio ANA 105  819  74  1  64 .999 10.15 .895
Conine BAL  80  646  45  4  61 .994  9.27 .831
Daubach BOS 106  839  75 11  71 .988  9.09 .846
Konerko CHW 144 1277  90  8 120 .994  9.76 .853
Thome CLE 148 1176  78 10 105 .992  9.36 .805
Clark DET  78  647  48  3  69 .996 10.23 .850
Sweeney KAN 108  946  88 12 124 .989  9.99 .842
Mientkiewicz MIN 148 1263  69  4  95 .997  9.44 .868
Martinez NYY 149 1143  99  5 105 .996  8.64 .881
Giambi OAK 136 1224  75 11 107 .992  9.94 .875
Olerud SEA 158 1210 121  9 116 .993  8.89 .848
Cox TAM  78  569  48  1  64 .998  8.66 .839
Palmeiro TEX 113  905  83  8 112 .992  8.93 .858
Delgado TOR 161 1520 103  9 167 .994 10.15 .844

ZR scores from http://sports.espn.go.com.
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Stolen bases

Next, I will add Suzuki’s stolen bases.  Subtracting Suzuki’s 14 CS from his 56 SB yields a net total of 42 bases, or 40 more bases than
Giambi (2 SB, 0 CS).  The value of a CS, in terms of lost productivity, however, is not equivalent to a SB.  The conversion factor is CS =
SB*1.75, for a net increase of 31 bases, or 29 more than Giambi.  I will simply add these bases to Suzuki’s total.

 AB   H  TB BB   BA  OBP  SLG  OPS
Before 692 312 421 30 .450 .477 .608 1.085
Adjusted 692 312 450 30 .450 .477 .650 1.127

Clutch hitting

Finally, I will adjust for hitting with runners in scoring position.  Suzuki led the league in this category, hitting .449.  However, Giambi hit
well with runners in scoring position, too:

 AB  H TB BB   BA  OBP  SLG RBI  OPS
Suzuki 136 61 74 17 .449 .509 .544  55 1.053
Giambi 113 40 73 51 .354 .531 .646  72 1.177

With runners in scoring position, Giambi had 19 extra base hits (12/ 0/7) compared to seven for Suzuki (6/2/1).  Giambi drove in 0.43 runs
per plate appearance with runners in scoring position, Suzuki 0.36 runs.  Pitchers were three times more likely to take the stick out of
Giambi’s hands compared to Suzuki.

On the one hand, both Giambi and Suzuki have already had these totals incorporated into their OPS statistics.  On the other hand, there is a
quantitative difference between the two players:  to reach Giambi’s mark of 1.177 OPS, Suzuki needed 12 additional singles in his 136 AB
(BA = .536, SLG = .632, OPS = 1.168).  I will penalize Suzuki the 12 singles from his batting record.  I have no data to support this
adjustment; hopefully, it reflects the bonus value of Giambi’s performance in the context of the game.

 AB   H  TB BB   BA  OBP  SLG  OPS
Before 692 312 450 30 .450 .477 .650 1.127
Adjusted 692 300 438 30 .433 .460 .633 1.093

The summary so far: adjusting for defense, base stealing and clutch hitting gives Suzuki an adjusted OPS of 1.093, compared to Giambi’s
OPS of 1.137.  Suzuki had a much better season than I thought, and made roughly similar contributions to winning as Giambi.  But the
difference still represents over 20 points in batting average -- the difference between a .350 hitter and a .370 hitter.

Of course, the award is for Most Valuable Player, not for Best Offensive Performance.  Value is a nebulous term that can manifest itself in
many ways.  For the purposes of this discussion, I will ask two questions:  which player had the greater influence on the pennant race?  And
second, which of the two ballplayers would be easier to replace?

Influence on the pennant race

In 2001, Seattle won its division by 14 games over Oakland, while Oakland won the wild card by 17 games over Minnesota:

W L PCT  GB
Seattle 116 46 .716  --
Oakland 102 60 .630  14
Anaheim 75 87 .463  41
Minnesota 85 77 .525 (17)

Suzuki’s 128 RC is the equivalent of approximately 13 offensive wins; if Seattle had played without a right fielder, it still would have won
the AL West.  Giambi’s 173 RC is the equivalent of 17 offensive wins; if Oakland had played without a first baseman, Oakland would have
tied Minnesota for the wild card.  Removing Suzuki and Giambi from the pennant race does not unambiguously change the pennant race or
the teams in the playoffs.
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Finding a replacement

Teams do not play without a player at each position. Between Giambi and Suzuki, Suzuki may have been easier to replace.  At least one
other AL right fielder hit as well as Suzuki: Magglio Ordonez created 122 runs, only one half of an offensive win behind Suzuki’s 128 RC
(Table 5).  Trot Nixon, Juan Gonzalez and Jermaine Dye
were all within two offensive wins.

Suzuki also consumed an enormous number of outs:  467
outs in 738 PA, 8th highest in the AL.  Although Suzuki’s
128 RC ranked 9th in the AL, the 467 outs produce an
RC/out ratio of 0.274, third-best among AL right fielders.
On a ratio basis, both Ordonez and Gonzalez were more
productive than Suzuki.

Ordonez, Gonzalez and Dye all had average defensive
numbers.  Suzuki was easily the best defensive right
fielder in the league, and the difference was substantial:
Suzuki’s defensive won/loss percentage of approximately
.670 converts to one or two defensive wins above average.
Offensively, Suzuki could be replaced.  Defensively,
Suzuki was the best in the league.  Largely because of his
glove, Suzuki was probably 2 wins better than the best
available replacement right fielder.

Giambi clearly created more offensive wins than any other
AL first baseman (Table 6).  The next best first baseman,
Jim Thome, was still three offensive wins below Giambi’s
total.  Rafael Palmeiro and Carlos Delgado were each four
offensive wins below Giambi’s total, and John Olerud 6.5
wins.  Giambi was also very efficient -- his RC/out ratio of
0.482 was easily the best ratio among AL first basemen.
Only one player in the league hit as well as Giambi, and he
was a shortstop.

Defensively, Giambi was average at best, but none of the
outstanding hitters at first base were much better; it
appears unlikely that any of Thome, Palmeiro or Delgado
would have substantially improved on Giambi’s defense.
Giambi was at least three wins better than the best
available replacement first baseman – very close to the two
wins estimated for Suzuki.

Conclusion

Did Giambi really deserve the MVP?  Giambi may have
played better than Suzuki, but the difference was slight at
best, and the questions of replacement and influence seem ambiguous.  Suzuki, on the other hand, was clearly a leader on the best team in
the league, and he played on a division winner.  Both Giambi and Suzuki were deserving of the MVP award, but to the victors go the spoils:
Suzuki was probably a better choice than Giambi.  Excuse me while I go check my blood pressure.

Duke Rankin, 136 Indigo Lane, Calera, AL, 35040-4646, rankind@montevallo.edu ♦

Table 5:  Hitting statistics for AL right fielders

 OPS  RC RC/out
Salmon ANA .748  73 .192
Richard BAL .770  67 .177
Nixon BOS .881 107 .270
Ordonez CHW .914 122 .282
Gonzalez CLE .960 114 .302
Encarnacion DET .700  49 .148
Lawton MIN .835  62 .219
O’Neill NYY .789  75 .189
Dye OAK .813 102 .232
Suzuki SEA .838 128 .274
Grieve TAM .760  84 .203
Ledee TEX .654  27 .141
Mondesi TOR .794  90 .199

Table 6:  Hitting statistics for AL first basemen

  OPS  RC RC/out
Spiezio ANA  .764  67 .196
Conine BAL  .829  92 .241
Daubach BOS  .859  74 .239
Konerko CHW  .856 101 .232
Thome CLE 1.040 143 .373
Clark DET  .856  77 .241
Sweeney KC  .916 113 .279
Mientkiewicz MIN  .851 100 .254
Martinez NYY  .830  95 .217
Giambi OAK 1.137 173 .482
Olerud SEA  .873 109 .259
Cox TAM  .750  46 .172
Palmeiro TEX  .944 136 .306
Delgado TOR  .948 135 .319

[data from sports.espn.go.com].
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Study

Strength of Opposition a Starting Pitcher Faces:
Part I – Introduction of Method

Rob Wood

What is the best way to calculate the average strength of a group of starting pitchers pitching one game each?  Averaging their winning
percentages fails to take into account that some winning percentages are based on small sample sizes, and therefore unreliable.  Weighting

the average by number of starts is also misleading because each pitcher should have equal weight regardless of how often he pitched in
games outside the sample.  Here, the author provides an alternative statistic, based on a bayesian approach, that estimates a pitcher’s

intrinsic winning percentage even in the face of a very small number of starts.

Sabermetricians have used a pitcher’s ERA as the best measure of how well he pitched in any season.  Of course, ERAs need to be
considered in their context.  Sabermetrics provides methods to take into account the era and the ballparks in which the pitcher’s ERA was
achieved.  After all, a 2.90 ERA means different things in 1930 vs. 1968, or in Dodger Stadium vs. Coors Field.

In Dick Thompson’s fabulous review of Wes Ferrell’s career, he uncovered evidence that Ferrell’s ERA might have been high for contextual
reasons other than era and parks.  Specifically, in reviewing Ferrell’s career, it seemed that Ferrell was often pitted against the toughest
opponents (both teams and opposition starting pitchers), whereas it seemed that Lefty Grove was often pitted against easier opponents.  Dick
raises an interesting point.  A pitcher’s ERA depends upon who he faced over the course of the season, and if there are systematic factors
causing one pitcher to face tougher opposition than another, these factors should be taken into account when comparing their ERAs.

By using game-by-game Retrosheet data, the esteemed Tom Ruane looked into the specific case of Ferrell vs. Grove.  It turns out that there is
little evidence that, over the course of their entire careers, Ferrell systematically faced tougher opposition than did Grove.  While with
Cleveland, Ferrell did indeed face tough opposition; however, Ferrell’s opposition with the Red Sox was easier than Grove’s.

Leaving aside the specific Ferrell-Grove comparison, Dick raises a challenging methodological issue that needs to be addressed.  How do we
measure the “strength” of the opposition that a pitcher faces in a season?  After all, we would like to know if he faced more difficult or easier
opposition than, say, his pitching teammates did.  Remember that the fact that he does not face his own team (e.g., Herb Pennock did not
have to face Babe & Lou and the vaunted 1927 Yankee offense) is already captured in the “park factor”.1

Tom Ruane looked at several statistics -- first, the average win percentage of the teams that the pitcher faced in the season (OPct); and
second, the average win percentage of the opposition starting pitchers that the pitcher faced in the season (PPct)2.  Then, these two measures
then compared to the average win percentage of all the teams that the pitcher’s club faced in the season (TPct).  A pitcher can be said to have
faced tougher opposition than expected if OPct or PPct are significantly greater than TPct.

While this seems to be a reasonable approach, problems arise when a pitcher faces another pitcher who only starts a few games in the season.
Let’s see why.  Suppose an opposition starter goes 0-1 for the season.  Maybe he was an emergency starter, maybe he got injured after that
game, or maybe he was a September call-up.  This throws a wrinkle into the calculation of PPct above, since his win percentage of .000 goes
into the average along with all the other pitchers’ win percentages.

For simplicity, suppose a pitcher faced the following four pitchers: 20-10, 20-10, 20-10, and 0-1.  The average win percentage of these
pitchers is .500 (the average of .667, .667, .667, and .000).  Everyone would agree that in this case .500 is not a good reflection of the
strength of the collection of pitchers our hero faced.  The average method ignores how “reliable” the win percentages are likely to be (sample
size issues).

Several people recommended that instead of the average of the win percentages, it would be better to take the win percentage of the
combined records of the pitchers faced.  In the example above, the opposition starters combined for a 60-31 record, which is a .659 win
percentage.  This is a much better reflection of the strength of the opposition, though it may appear to be too high.

                                                                
1  This is why park factors are calculated for a team’s pitchers and hitters separately.
2  In the database that Tom used, each game’s losing pitcher was not available, so Tom used the win pct of the team in games that the opposition starter
started.  This does not affect what follows.
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Unfortunately, examples can be readily found for which the combined win percentage method gives an answer we are not happy with.
Suppose the pitcher faced the following pitchers: 30-0, 0-10, 0-10, and 0-10.  The combined record method gives .500 (the win percentage
of 30-30).  This is surely too high, since our hero actually faced one unbeatable foe and three bums.  The combined method ignores the fact
that each game has a separate winner and loser.

In this article, I will introduce a method that is the best of both worlds.  The method will automatically take into account sample size issues
as well as the fact that each game has a winner and loser.  In addition, the method will combine the information contained in OPct (the
strength of the opposition teams) and PPct (the  strength of the opposition starters) in one single measure.

The method will be based upon statistical inference methods sometimes called “Bayesian updating” methods.  Bayesian inference starts with
a prior belief, obtains new sample observations, and then constructs a posterior distribution that combines (i.e., updates) the prior beliefs
with the new information contained in the sample.  One important aspect of this updating process is a decision on how much weight we
should put on our prior beliefs and how much weight we should put on the new observations.  I will return to this below.

As a silly example of Bayesian updating, suppose that you believe that 90% of all lawyers carry briefcases.  On the way to your office, you
see 10 lawyers and only 5 of them have briefcases.  What do you believe now?  Bayesian inference provides the means by which you should
properly update your prior beliefs (90%) with the new information (50%) to give you your new beliefs (??%).  Clearly, the stronger your
prior beliefs, for example the more evidence it is based upon, the less you change your beliefs.  Suppose you have been counting lawyers and
briefcases everyday for 10 years.  Then your prior is very solid and a new sample of 5 of 10 briefcases is unlikely to change your belief
much.  On the other hand, suppose the 90% belief was only based upon yesterday’s count of 9 of 10.  Then you would be likely to update
your beliefs so that you now believe that 70% of lawyers carry briefcases (14 of 20).

To use this methodology in our case, let's call the opposition starting pitcher’s W-L record the sample (the new data) and his team’s W-L
record as the prior3.  The posterior then is a reflection of how strong we think the opposition team really is when the starter in question starts
against us.  For example, suppose you are about to face the 1927 Yankees and they are starting a pitcher who is 0-2 for the season.  What is a
good measure of the strength of your opposition on that day?  Surely we want to take into account the fact that the 1927 Yankees are a great
team (as reflected in their great win percentage) as well as the fact that the bum who is pitching has not demonstrated an ability to win in the
big leagues (though the evidence is only two starts).  Bayesian inference provides the formulas to come up with the best measure.

Remember we need a way to reflect our prior beliefs.  This needs to be a distribution that has a mean reflecting our “current belief” and a
variance reflecting how strongly we believe our current belief.  Variance reflects how much uncertainty there is around the mean.  The
smaller is the variance, the less uncertainty, so the greater is our confidence in the prior, and the less we update it based upon new data.

The standard prior distribution used in Bayesian inference of a binomial probability4 is a beta distribution.  A beta distribution takes values
between 0 and 1.  With a beta prior, the posterior distribution of a binomial probability also is a beta distribution.  We will also make use of
the additional fact that under very general conditions, the mean of the posterior distribution minimizes Bayes risk when the loss function is
quadratic.  The mean of the posterior distribution is

Best Pred = E[p|x,n] = (x+a)/(a+b+n)

where the new sample data is x “successes” out of n trials, and a and b are the parameters of the prior beta distribution.  In our case, x is W
and n is W+L, meaning that the new information (the opposition starter’s record) is W wins and L losses.

We can solve for a and b using the formulas for the mean and variance of a beta distribution.

E[y] = a/(a+b);  Var[y] = (a*b)/[((a+b)^2)*(a+b+1)]

A reasonable assumption is that the mean of the prior distribution should be set equal to the observed win percentage of the opposition team.
Call this Q.  For simplicity, let’s use the variance of the proportion of successes of a binomial process for the variance of the prior
distribution.

Then E[y] = Q and Var[y] = (Q*(1-Q))/T  where T is the number of “prior observations”.  That is, if T is very large, our uncertainty around
our prior belief on Q is very small, and the less we would change our estimate with new data.  On the other hand, if T is very small, our
uncertainty around our prior belief on Q is large, and the more we would change our estimate with new data.

                                                                
3  For this discussion I don’t think it matters if we remove the pitcher’s own decisions from the team record.
4  A team’s wins in a season is often treated as a binomial process with the probability of winning each game being the binomial probability p.
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Equating the means and variances and solving for a and b in terms of Q and T yields the following:

a = Q*(T-1)  and b = (T-1)*(1-Q).

Plugging these values into our formula of the mean of the posterior distribution yields:

Best Pred = [W+(Q*(T-1))]/(W+L+T-1)

The formula above is the best updated prediction of a team’s winning percentage when a specific starter starts.  We need the following
information.  Q is the win percentage of the opposition team in all of its games.  W is the specific starter’s wins in the season, and L is the
specific starter’s losses in the season.  The only remaining variable we need is T.

Let’s see how the formula behaves with T.  Suppose T is one.  Then you can see that our best prediction is the pitcher’s own win percentage
(W/(W+L)).  As T gets larger, the prediction moves from the pitcher’s own win percentage to the team’s win percentage.  This makes
intuitive sense since T was a reflection of the confidence we had in the prior.

I have played around with the formula at some length.  For seasonal win percentages, I have found that a reasonable value for T is around 15.
Roughly speaking, this implies when a pitcher reaches 15 decisions, our best estimate of his “true” win percentage (i.e., the “true” win
percentage of his team when he starts) is the average of his own win percentage and the win percentage of his team in all of its games.  As
the number of his decisions increases, the more faith we put in his own win percentage; and below 15 the more faith we put in the team win
percentage.

I have coded up an Excel spreadsheet that has the relevant formulas in it that allows me to play around with various cases and see the result
using different values for T.  I am comfortable that a value of 15 is sensible.  I would be happy to send the spreadsheet to anyone interested.

Where does all this leave us?  We now have a formula that estimates the “strength” of each opposition starter that a pitcher faces over the
course of a season.  The formula automatically takes into account the number of games associated with the opposition pitcher’s win
percentage.  The next step is to take the average of these strength estimates over all the pitchers our hero faced in the season.5

Let’s look at how the Bayesian method measures the opposition’s strength in the two examples listed above.  If our hero faced the following
pitchers 20-10, 20-10, 20-10, and 0-1, the Bayesian method says that the strengths of these four pitchers are .614, .614, .614, and .467,
respectively.  The average opposition is therefore .577.  Recall that we thought that the average .500 was too low but the combined method's
score of .659 was too high.

The other example I mentioned was that our hero faced 30-0, 0-10, 0-10, 0-10.  The average of .250 was too low, while the combined
method's score of .500 was too high.  The Bayes method gives four estimates of .841, .292, .292, .292, for an average of .429.   In both
examples, I consider the Bayes estimate to be very reasonable.  The Bayes examples above used T of 15 and a Q of .500.  In reality, I
recommend using the opposition teams’ actual win percentages for Q.

To summarize, I am proposing a method of estimating the strength of any pitcher's opposition during a season.  The method automatically
takes into account the strength of the opposition teams as well as the strength of the specific opposition starting pitchers.  The method was
specifically developed to properly address small sample issues that can bedevil other “ad hoc” formulas since many pitchers have gone 0-1,
0-2, etc.  The method is based upon Bayesian statistical inference and yields a formula that is very simple to program and to understand.6

Rob Wood, 2101 California St. #224, Mountain View, CA, 94040-1686,  robert_wood@standardandpoors.com ♦

                                                                
5  If our hero faced the same opposition pitcher more than once, the best prediction of the opposing starter’s win pct should enter the average more than once.
6  I would be happy to work with anyone who has access to historical game-by-game records.  We could look at the strength of the opposition faced by
various pitchers such as Christy Mathewson, Pete Alexander, Walter Johnson, Lefty Grove, Bob Feller, Warren Spahn, Sandy Koufax, Bob Gibson, Tom
Seaver, Roger Clemens, Greg Maddux, et al.

mailto:rob.wood@us.pwcglobal.com
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Informal Peer Review

The following committee members have volunteered to be contacted by other members for informal peer review of articles.

Please contact any of our volunteers on an as-needed basis - that is, if you want someone to look over your manuscript in
advance, these people are willing.  Of course, I'll be doing a bit of that too, but, as much as I'd like to, I don't have time to

contact every contributor with detailed comments on their work.  (I will get back to you on more serious issues, like if I don't
understand part of your method or results.)

If you'd like to be added to the list, send your name, e-mail address, and areas of expertise (don't worry if you don't have any - I
certainly don't), and you'll see your name in print next issue.

Expertise in "Statistics" below means "real" statistics, as opposed to baseball statistics - confidence intervals, testing, sampling,
and so on.

Member                                                        E-mail                                                           Expertise                                       
Jim Box im.box@duke.edu Statistics
Keith Carlson kcarlson2@mindspring.com General
Rob Fabrizzio rfabrizzio@bigfoot.com Statistics
Larry Grasso l.grasso@juno.com Statistics
Tom Hanrahan HanrahanTJ@navair.navy.mil Statistics
Keith Karcher kckarcher@compuserve.com General
Chris Leach chrisleach@yahoo.com General
John Matthew IV john.matthew@rogers.com Apostrophes
Duke Rankin RankinD@montevallo.edu Statistics
John Stryker johns@mcfeely.interaccess.com General
Dick Unruh                   runruhjr@dtgnet.com Proofreading
Steve Wang scwang@fas.harvard.edu Statistics

Receive BTN by E-mail

You can help save SABR some money, and me some time, by receiving your copy of By the Numbers by e-mail.  BTN is sent
in Microsoft Word 97 format; if you don’t have Word 97, a free viewer is available at the Microsoft web site

(http://support.microsoft.com/support/kb/articles/Q165/9/08.ASP).

To get on the electronic subscription list, send me (Phil Birnbaum) an e-mail at birnbaum@sympatico.ca.  If you’re not sure if
you can read Word 97 format, just let me know and I’ll send you this issue so you can try

If you don’t have e-mail, don’t worry – you will always be entitled to receive BTN by mail, as usual.
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Submissions
Phil Birnbaum, Editor

Submissions to By the Numbers are, of course, encouraged.  Articles should be concise (though not necessarily short), and
pertain to statistical analysis of baseball.  Letters to the Editor, original research, opinions, summaries of existing research,

criticism, and reviews of other work (but no death threats, please) are all welcome.

Articles should be submitted in electronic form, either by e-mail or on PC-readable floppy disk.  I can read most word processor
formats.  If you send charts, please send them in word processor form rather than in spreadsheet.  Unless you specify

otherwise, I may send your work to others for comment (i.e., informal peer review).

If your submission discusses a previous BTN article, the author of that article may be asked to reply briefly in the same issue in
which your letter or article appears.

I usually edit for spelling and grammar.  (But if you want to make my life a bit easier: please, use two spaces after the period in
a sentence.  Everything else is pretty easy to fix.)

If you can (and I understand it isn’t always possible), try to format your article roughly the same way BTN does, and please
include your byline at the end with your address (see the end of any article this issue).

Deadlines: January 24, April 24, July 24, and October 24, for issues of February, May, August, and November, respectively.

I will acknowledge all articles within three days of receipt, and will try, within a reasonable time, to let you know if your
submission is accepted.

Send submissions to:
Phil Birnbaum

18 Deerfield Dr. #608, Nepean, Ontario, Canada, K2G 4L1
birnbaum@sympatico.ca
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