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Summary

Academic Research: Clutch Hitting and
Sudden Slugging

Charlie Pavitt

The author catalogs two more recent studies from Chance magazine.  First, another investigation into clutch hitting, and, second, an
examination of the probability that large jumps in a player’s home runs would arise simply by chance.

This is one of a series of reviews of sabermetric articles
published in academic journals.  It is part of a project of mine to
collect and catalog sabermetric research, and I would appreciate
learning of and receiving copies of any studies of which I am
unaware.  Please visit the Statistical Baseball Research
Bibliography at its new location
www.udel.edu/communication/pavitt/biblioexplan.htm .  Use it
for your research, and let me know what is missing.

Jim Albert,
Hitting with
Runners in
Scoring
Position,
Chance, Volume
15 Number 4,
Fall 2002,
pages 8-16

Jim Albert has already
explored this area in
an important article in
the Journal of the
American Statistical
Association back in 1994 (summarized in Curve Ball), showing
little support for across-the-board differences in several of the
offensive “breakdown statistics” listed in the STATS Player
Profiles series publications.  In this study, Albert used 1987
National League raw data compiled by Project Scoresheet to
address one of these breakdowns; offensive performance with
baserunners in scoring position (vs. not in scoring position).  For
that year, Albert calculated expected runs scored for the 24 base-
out situations, computed the difference in expected runs between
contiguous base-out situations (Gary Skoog’s still-underutilized
“value added” approach; see the 1987 Abstract), and then
computed the difference in individual players’ “value added”
offensive performance between plate appearances with and

without runners in scoring position.  As we almost always find in
these sorts of studies, the distribution of the differences was
largely random.  This is a nice new method leading to more
evidence that most breakdown stats have little value.

I would be remiss, however, by not mentioning a potential
problem in Albert’s analysis.  Albert computes the change in run
potential between plate appearances.  But base-out situations

change during at
bats due to stolen
bases, caught
stealing, wild
pitches, passed
balls, and balks.  I
expect that the
former two mostly
cancel one another
out in the long run
and the latter three
may not amount to
much, but the
impact of events
during at bats
would throw
Albert’s value
added numbers off
a bit.  Jim, I trust

that you will read this and I invite your response.

Scott M. Berry, A Juiced Analysis, Chance,
Volume 15 Number 4, Fall 2002, pages 50-53

This is an example of a fun and useful column Berry writes in
each issue of Chance entitled “A Statistician Reads the Sports
Pages,” which features a baseball subject once or twice a year.
Responding to the idea that steroid use could be responsible for
sudden improvements in a batter’s home run production, Berry
computed the odds of a player’s home run percentage in a
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specific year given that player’s home run percentage the
previous three seasons of his career (1000 at bat minimum),
weighing (along the lines of Bill James’s career assessment
method) the most previous season the most and first of the three
seasons the least in the computation.  The most abrupt increase
was Kirby Puckett’s 31 in 1986, after 4 combined in his previous
two seasons, with a probability of 2 in 100 million.

Berry knows full well that this is no evidence whatsoever that
Kirby did steroids.  Its value, if any, is as a method for
recognizing abrupt performance improvements.  My problem
with this analysis in that context is that it ignores subsequent
seasons, so that it cannot distinguish between a player who has

abruptly but clearly raised his performance level and a player
who is having a fluke season.  Berry lists the 40 most extreme
home run seasons since 1923, and one finds examples of both the
former (Lou Gehrig in 1927, Hank Greenberg in 1938, Johnny
Mize in 1947, Stan Musial in 1948, Carl Yastzremski in 1967,
Jeff Bagwell in 1994, Sammy Sosa in 1998) and latter (Tommy
Holmes in 1945, Chico Fernandez in 1962, Bert Campaneris in
1970, Davey Johnson in 1973, Enos Cabell in 1977, Wade Boggs
in 1987).  Puckett’s 1986 was a signal of an actual performance
jump, as he notched 20 or more homers five more times before
his career’s abrupt end.  Thus, the performance I am personally
most impressed with is Brady Anderson’s 50 in 1996, with odds
of 6½ in 10 million.

Charlie Pavitt, 812 Carter Road, Rockville, MD, 20852, chazzq@udel.edu ♦

Submissions
Phil Birnbaum, Editor
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Summary

Brief Reviews
Phil Birnbaum

The author gives short reviews from recent non-academic sabermetric studies.  This issue: a possible log5 alternative, a proposed method to
forecast a player’s batting average, and a pitch count estimator statistic.

Jai-Alai Analysis Suggests Log5 Alternative

The book Calculated Bets details the author Steven Skiena’s successful attempt to turn a consistent profit on Jai-Alai pari-mutuel betting
(which is legal in Connecticut).  In his entertaining book, Skiena describes how he wrote a computer simulation to determine the relative
probabilities of winning combinations, and refined his system to calculate the odds on the fly, betting only when the odds were in his favor.

Many of the lessons of Skiena’s jai-alai research could apply equally to baseball research; but one finding in particular is of interest to
Sabermetricians.  Skeina’s system requires an estimate of the probability of, say, a .550 Jai-Alai player beating a .475 player.  For baseball,
Bill James came up with the log5 method two decades ago; here, on page 103, Skiena (who seems unaware of the baseball equivalent)
invents an alternative:

[ ]
2
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Here, “prob” is the probability favorite A beats underdog B.  The terms wp(A) and wp(B) are A and B’s theoretical winning percentages
against a .500 league.  The exponent, alpha, is determined empirically – Skiena found that a value of 0.4 works well for his data.

Steven Skeina, Calculated Bets, 2001, Harvard University Press, ISBN 0521009626

Batting Average Forecasting

In an essay on page 7 of the 2003 Baseball Forecaster, John Burnson discusses a new method for predicting a player’s batting average.
First, he notes that, by definition,

yBallsInPla
Hits

AB
yBallsInPlaBA *=

He then says that Baseball Forecaster research shows that the first term, balls in play per at-bat, is consistent for players from season to
season.  Therefore, coming up with an estimator for the second term, hits/balls in play, would allow us to estimate BA.  A regression leads to
a formula for this second term, and then Burnson tests his new estimator, which he calls xBA.

The results: as a predictor, xBA beat the previous year’s BA by 55:45.  Further, “when the discrepancy between xBA and prior year’s BA
was large (at least 30 points), our equation’s predictive edge grew to almost 2:1 vs. prior year’s BA, and xBA predicted the direction of
change in 80% of those cases.”

However, it should be pointed out that prior year’s BA is not a particularly good estimator of current year’s BA.  Because of regression to
the mean, players who had a higher BA last year would be predicted to drop, and players with a lower BA would be predicted to rise.  It’s
possible that a simple formula like “last year’s BA, but brought 20% closer to the mean,” or even “a weighted average of the player’s last
three years’ BA” would perform better than xBA.  But Burnson’s approach is interesting, and deserves a closer look.

Ron Shandler (et al), Baseball Forecaster 2003, Shandler Enterprises LLC, ISBN 1891566032
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Pitch Count Estimators

If a pitcher throws seven innings, striking out five and walking three, how many pitches has he likely thrown?  Prolific sabermetrician
Tangotiger, who publishes on various websites, has two ways of addressing the question.

The first model from Tangotiger (who is also known as Tom) is

BBKBIPPitchCount *5.5*8.4*3.3 ++=

This formula is based on averages for every pitcher in the league.  Since the average plate appearance that led to a ball in play ended in 3.3
pitches, we just estimate than any such PA consumed 3.3 pitches.

Tom recognizes, however, that the coefficients should be different for every pitcher.  Since Nolan Ryan strikes out more batters than average,
and walks more batters than average, we would expect he goes deep in the count more than average.  And therefore, even when the batter
puts the ball in play, he probably did so after more pitches than the average 3.3.

Similarly, the average pitcher, when striking out a batter, does so after 1.8 non-strikes (since there are 4.8 pitches in the average strikeout).
But Nolan Ryan, who throws so many balls, might have a higher number of non-strikes per strikeout.  The same logic applies to walks.

Tom’s new formula tries to estimate new values for the coefficients, based on the characteristics of the pitcher – namely, his ball-in-play rate.
The new coefficients are:
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Tom writes, “I encourage other sabermetricians to pick up where I left off … I’m reasonably certain that the basis for the model is correct,
but this would be better established with actual data.”

Any empirical test would have to keep in mind that because managers won’t leave pitchers in for high pitch counts, high predictions might
be incorrect.  For instance, if a pitcher’s line predicts he threw 200 pitches, he probably didn’t – he likely did not go as deep in the count that
day as the formula predicts, because the manager wouldn’t have left him in that long if he had.

Website: http://www.baseballstuff.com/tangotiger/pitchCountEstimator.html

The editor encourages readers to submit short reviews so we can make this a regular feature of BTN.  Phil Birnbaum, 18 Deerfield Dr.
#608, Nepean, ON, Canada, K2G 4L1, birnbaum@sympatico.ca ♦

mailto:birnbaum@sympatico.ca
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Study

The Relationship Between Skin Tone and Performance
– A Preliminary Analysis

Duke Rankin

Cubs manager Dusty Baker recently sparked controversy when he asserted that black players perform better in hot weather than white
players do.  Here, the author looks for evidence of whether the assertion is, or isn’t, supported by the statistical record.

Introduction

Baseball certainly has its share of controversies.  Recently, for example, Dusty Baker stated black players perform better in the heat of
summer:

We were brought over here for the heat, right?  Isn't that history?  Weren't we brought over because we could
take the heat?  Your skin color is more conducive to heat than it is to the lighter-skinned people.  I don't see
brothers running around burnt.  That's a fact.  I'm not making this up. I'm not seeing some brothers walking
around with some white stuff on their ears and nose (http://espn.go.com/mlb/news/2003/0707/1577519.html).

Setting aside the sociological implications of this observation, Baker presents a testable hypothesis:  players with dark skin tones should play
better in warm weather than players with light skin tones.  At the risk of offending large sections of the baseball public, I examined this
question by comparing the performance of differently colored players during different periods of the season.1

Methods

I selected three teams for the analysis:  the Red Sox, Yankees and Braves.  I chose these teams because I am reasonably familiar with the
racial backgrounds of their players.  In addition, the home cities of these teams form a climatic gradient while retaining the seasonal climates
uncharacteristic of the more equitable climate of cities such as San Diego.  Although certainly not a random sample, I have no reason to
believe these three teams represent a biased sample for this analysis.

Next, I divided the MLB season into two climatic periods -- cool months (April, May, September and October) and hot months (June, July
and August).  The hot months exhibit the three highest mean
temperatures for each of the three cities (Table 1).

For each team, I designated each member of the starting lineup
as either white or black, based on the photograph of the player
on the ESPN website combined with my personal knowledge of
the player (Appendix 1).  Please note this is a subjective
determination of relative skin tone, and not a determination of
racial origin.  In general, skin tone was readily evident --
Alfonso Soriano's skin tone is clearly darker than Robert Fick's
skin tone.  For a few players, however, skin tone was
intermediate.  Derek Jeter, for example, has one black parent and
one white parent.  I designated these players as intermediate
condition, and expanded my hypothesis:  if skin tone determines
player performance in regards to temperature, then players of
intermediate skin tone should exhibit an intermediate response to
changes in temperature.  I placed many of the Latin players into
the intermediate category.

                                                                
1 I would like to thank three anonymous reviewers for their comments regard
analysis and assistance in completing the manuscript.
Table 1:  Monthly mean temperature (in degrees
Fahrenheit) for the three cities in the study
(downloaded from www.weather.com).

Boston New York Atlanta
April 48 52 62
May 59 63 70
June 68 72 79
July 74 77 80
August 72 76 79
September 65 69 73
October 54 58 63
Page 5

ing the statistical analysis.  I also thank Phil Birnbaum for his insights into the
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For each starter, I downloaded basic hitting statistics from the splits section of www.sports.espn.go.com/mlb/ for the three year period 2000-
2002.  Pitchers were excluded from the study because the three teams have only one black starting pitcher (Pedro Martinez).  Players without
complete seasonal data were also excluded.  For each player/climate period category, I totaled at bats, hits, walks and total bases, then
calculated BA, OBP, SLG and OPS.  The study was completed before the recent trades involving Robin Ventura and Raul Mondesi.

Results and Discussion

In general, white players hit for higher average and OPS in cooler months than warmer months (Table 2).  Black players, on the other hand,
hit better in warmer months.  Players of intermediate skin tone exhibited an intermediate response, at least for batting average.

Table 2:  Differences in batting performance based on skin tones and climatic period of the MLB season

Skin Tone Players Total AB BA Cool
Months

BA
Warm
Months

BA
Difference

OPS Cool
Months

OPS Warm
Months

OPS
Difference

White 13 15426 .288 .282 -.006 .858 .842 -.016
Intermediate  5  7276 .282 .285 +.003 .798 .829 +.031
Black  9 12253 .285 .294 +.009 .860 .885 +.025

For the purposes of the study, Jason Giambi is a good example of a cool-season hitter:

AB H 2B 3B HR BA
Cool Months 820 283 56 1 72 .345
Hot Months 770 241 54 3 50 .312

Gary Sheffield, meanwhile, is a good example of a warm-season hitter:

AB H 2B 3B HR BA
Cool Months 701 203 28 3 39 .289
Hot Months 807 271 50 2 65 .335

And Derek Jeter exhibits an intermediate response:

AB H 2B 3B HR BA
Cool Months 847 262 43 4 23 .309
Hot Months 1004 321 49 3 31 .319

The most enigmatic player was Johnny Damon.  On the one hand, I had trouble characterizing his skin tone -- his features strike me as
intermediate, but Damon is from Kansas, and, in the absence of better information, I categorized him as white.  Damon, however, is one of
the most pronounced warm season hitters in the study:

AB H 2B 3B HR BA
Cool Months 939 255 37 15 19 .272
Hot Months 983 302 73 10 20 .307

The data are quite limited, and the differences almost certainly insignificant.2  Clearly, the study would be improved by increasing the sample
to include all major league players or more effectively randomizing the sample.  Nevertheless, the data are consistent with the Baker

                                                                
2 The statistical analysis of the data is problematic.  One reviewer compared the means in each skin tone treatment using Student's t-test, and concluded none
of the differences are statistically significant, including the seasonal differences exhibited by the individual players.  A second reviewer used a z score
patterned after Pete Palmer's test for clutch hitting and found only one potentially significant difference -- the decrease in BA for white players from cool
season to warm season.  A third reviewer concluded it was not possible, given the data, to determine the statistical differences of the data.



By The Numbers, May, 2003 Page 7

hypothesis:  black players tend to perform better in warm months, at least in comparison to their performance in cool months.  White players
exhibit the opposite trend.

Although the seasonal differences may not be statistically significant, they may be meaningful in a baseball context.  Regressing team batting
average against runs scored for 2002 suggests a fifteen point increase in team batting average translates into a 50 - 75 increase in runs scored
over the course of the year.  This would represent, however, the extreme implementation of the seasonal effect -- a team platooning black and
white players of equal abilities at all eight positions.  The seasonal effect is actually quite small:  one hit every 67 at bats, or eight to nine hits
per player over the course of the season.  The seasonal effect is probably inconsequential in comparison to the overall quality of the players,
or more traditional platoon advantages.  The average left/right BA differential for the players in the analysis, for example, is fifty points
(excluding switch hitters).

Unfortunately, the study creates more questions than it answers.  Is the effect real, or simply an artifact of the teams and players chosen?
Does the effect extend to pitchers?  Is the effect more pronounced in cities with pronounced seasonal changes -- should Boston, for example,
use white players preferentially in the spring and fall, while San Diego use intermediate players all season?  Is the effect more pronounced
across a climatic gradient -- should Detroit, for example, preferentially acquire white players, while Florida acquires black players?  Can the
climate in which a player is raised reverse the trend -- do white players from warm climates hit better in warm weather than black players
raised in cold climates?  Fortunately, these represent testable hypotheses that can be addressed by further research.

Appendix

Players in the study, listed by skin tone categories.  Categories are based on subjective appraisals of color, and do not necessarily reflect
racial background.

White: Damon, Fick, M. Franco, Giambi, M. Giles, N. Johnson, C. Jones, Millar, Mueller, Nixon, Varitek, Ventura, Walker
Intermediate: Castilla, Garciaparra, Jeter, J. Lopez, Posada
Black: J. Franco, Furcal, A. Jones, Mondesi, D. Ortiz, M. Ramirez, Sheffield, Soriano, B. Williams

Duke Rankin, drankin@hiwaay.net  ♦

mailto:danrl@ibm.net
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Get Your Own Copy

If you’re not a member of the Statistical Analysis Committee, you’re probably reading a friend’s copy of this issue of BTN, or
perhaps you paid for a copy through the SABR office.

If that’s the case, you might want to consider joining the Committee, which will get you an automatic subscription to BTN.
There are no extra charges (besides the regular SABR membership fee) or obligations – just an interest in the statistical

analysis of baseball.

To join, or for more information, send an e-mail (preferably with your snail mail address for our records) to Neal Traven, at
beisbol@alumni.pitt.edu.  Or write to him at 4317 Dayton Ave. N. #201, Seattle, WA, 98103-7154.

Receive BTN by Internet Subscription

You can help save SABR some money, and me some time, by downloading your copy of By the Numbers from the web.  BTN
is posted to http://www.philbirnbaum.com in .PDF format, which will print to look exactly like the hard copy issue.

To read the .PDF document, you will need a copy of Adobe Acrobat Reader, which can be downloaded from www.adobe.com.

To get on the electronic subscription list, visit http://members.sabr.org, go to “My SABR,” and join the Statistical Analysis
Committee.  You will then be notified via e-mail when the new issue is available for download.

If you don’t have internet access, don’t worry – you will always be entitled to receive BTN by mail, as usual.
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Study

On the Pythagorean Winning Percentage
Jeff Thurston

The Pythagorean Projection is widely used to compute a team’s winning percentage based on its runs scored and runs allowed, and a large
body of research has shown it to be accurate.  But why does it work?  Here, the author examines some theoretical implications of run

scoring, with a view to casting some light on the success of the Pythagorean formula.

Introduction

The Pythagorean formula is frequently used to compute a team’s winning percentage using only the average number of runs the team scores
and allows.  Widespread application of the formula is attributable to the fact that it consistently generates results that approximate actual
winning percentages.  However, to my knowledge, there has been no mathematical proof demonstrating why this is so.  As a consequence,
the reasons for the accuracy of the formula are not well understood.  Improved understanding would certainly be welcome, perhaps
instructing us in, for instance, assigning meaning to departures of actual results from expected ones.

Originally this study was conceived to bolster understanding of the Pythagorean formula.  The plan was to provide a formal derivation of this
equation.  I optimistically assumed then that the assumptions and approximations necessarily imposed to proceed through the steps of the
derivation would provide insight useful for interpreting the numbers produced by the formula.  While I do make some progress in this
regard, by providing a proof, I fall short in my effort to draw a connection between knowledge garnered from the derivation, and an
understanding as to why a team does or does not perform according to the formula’s predictions.  Nevertheless, all is not lost, as a by-
product of the mathematical analysis is two new formulae, one of which is shown to hold some promise for assessing team performance.

I begin this paper by showing that the Pythagorean winning percentage is the probability that a team wins two-run games, assuming that runs
are scored by and against the team according to Poisson processes.  Studies that have been published in the statistical literature suggest that
run scoring is better described by a mixed Poisson (i.e. a negative binomial), rather than by a simple Poisson distribution.  Further, there is
nothing to suggest that a two-run difference has some special status as a particularly diagnostic margin.  As a consequence, there is no
immediately obvious reason as to why the Pythagorean formula works as well as it does.

Thus, while my original goal has not been achieved; the derivation does have some value, as it does lead to two new formulae, the first of
which makes it possible to calculate the probability of winning as a function of the final run differential (i.e. the conditional probability of
victory, given a final margin of victory/defeat).  The second equation can be used to compute overall probabilities of winning (i.e. the
probability of victory for all margins of victory/defeat).  It is important to note that both these equations arise from the assumption that runs
occur according to a Poisson distribution.  Because this is a statistically accurate assumption in only a limited number of games (Keller,
1994), one might be disinclined to present these formulae as universally reliable predictors of winning percentages.  However, the
Pythagorean method, which relies on the same assumption, has enjoyed ubiquitous application, and surprising accuracy, and this legacy
provides sufficient motivation to assess the ability of these two new closely related formulae to predict winning percentages.  I do this with
two tests.  In the first, I compare the probability of victory (given a final run differential) with actual winning percentages at a specified run
differential.  This comparison suggests that, on average, teams perform quite closely to what this first equation predicts.  In the second test I
compare actual and Pythagorean winning percentages with the probabilities computed by the second equation. This suggests that this second
equation less accurately models winning percentage than does the Pythagorean formula.

The remainder of the paper is concerned with analysis and an application of the run-differential dependant equation.  In the analysis, I show
how this formula dispels the notion that good teams (i.e. teams that average more runs than their opponents) should perform their best in
close games.  The application presents an example demonstrating how this formula can be used for analysis.  In this case, I compare expected
and actual winning percentages in close games, and discuss potential implications of this for assessing managerial performance.

Before continuing, the reader should be forewarned that, buoyed by the reasonable accuracy demonstrated in the aforementioned test, I
routinely refer to the conditional probabilities (i.e. the run-dependant probabilities) in terms of expected winning percentages as a function
of run differential.  This is done in spite of the fact that, as previously mentioned, the underlying assumption (namely that Poisson processes
govern run scoring) is likely oversimplified.  Nevertheless, the accuracy of the Pythagorean formula, together with initial indications of the
accuracy of the new run-dependant equation, suggest that perhaps this oversimplification is close enough for many purposes.
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Derivations

For two Poisson processes with averages m1 and m2, Skellam (1946) has shown that the probability that the distribution with mean m1
exceeds the distribution with mean m2 by exactly r is:
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where Ir is a modified Bessel function of the first kind.  Likewise, the probability that a variate from the distribution with mean m1 is less
than a variate from the distribution with mean m2 by exactly r is
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The probability of a difference of ±r is then:

).,(),( 2121 mmPmmPP rrr −± += (3)

Given a difference of ±r, the probability that the Poisson distribution described by mean m1 exceeds the distribution described by m2, is then:
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Since Ir is equal to I-r, when equations (1) and (2) are substituted into (3), the Bessel functions cancel.  As well, the exp terms cancel,
leaving:
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The quantity Wr(m1, m2) is the conditional probability a team that scores runs at a rate of m1, and allows runs at a rate of m2.wins, given that
the final difference is r runs.

For r = 2, equation (5) becomes the familiar Pythagorean winning percentage formula, which can now be described as the probability that a
team wins two-run games.  The inherent assumption made in using this well-known formula is that runs are scored and allowed according to
different Poisson processes, with means equal to the average runs scored and allowed per game.  Given that run scoring likely follows a
negative binomial distribution (see e.g. Reep et. al (1971), rather than a Poisson distribution, and that there is nothing obviously unique
about a two-run margin, I find it difficult to use this description of the theoretical underpinnings of the Pythagorean formula to both
understand why it performs as well as it does, and to assess the importance of a team’s deviation from it.

It is straightforward to derive a formula analogous to the Pythagorean formula, but which takes into account all margins of victory/defeat.
That is, Keller (1994) has shown that if runs are scored at a rate of m1, and surrendered at a rate of m2, then the probability of victory is:
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Likewise, the probability of defeat is:
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Equations (6) and (7) lead to a conditional probability of victory (conditional on the fact that ties are not permissible) of:

 .),( 21
dv

v

PP
PmmW
+

= (8)

It is important to emphasize the difference between equations (5) and (8).  The former estimates a probability of winning for a specified run
differential, whereas the latter is the probability regardless of the final run margin.
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Testing the New Formulae

The validity of the underlying assumption, namely that scoring follows a Poisson distribution, has been studied in numerous publications
(see e.g. Reep et. al (1971), Keller (1994) and references therein).  In general these authors have concluded that the run distribution is
typically overdispersed (i.e. the variance is greater than the mean).  Nevertheless, the success of the Pythagorean formula is sufficient
motivation to test the accuracy of these formulae.  This is done by comparing computed and actual results.

Testing of equation (8) using recent results suggests it less accurately conforms to actual winning percentages than the does the conventional
Pythagorean formula.  For the 2002 American League, equation (8) estimates had a mean squared error of roughly six (as compared to an
approximate mean-squared error of four for the Pythagorean formula).  In light of this, it is remarkable that the Pythagorean formula can be
used to accurately estimate a team’s total number of wins, as it remains unclear as to why a team’s probability of victory in two-run games is
typically close to its actual winning percentage for all margins of victory/defeat.

On the other hand, preliminary testing of equation (5) suggests that it provides probabilities that are reasonably similar to actual winning
percentages.  However, before presenting these results, it is important to point out one computational detail.  That is, in order to use equation
(5), average runs scored and allowed are required.  There are two ways in which these rates can be computed.  The simplest method is to
assume that these average-run rates are constant for each team in a particular season, and thus are unchanged regardless of the final run
differential.  Then, m1 and m2 are respectively the total runs scored and allowed divided by the number of games played.  The second
approach is to assume that run rates depend on the final run differential.  In this second approach, unique values for m1 and m2 are computed
for each final run differential for each team.  For instance, m1(r) is the average of runs scored in games ending with a difference of r, and
likewise for m2(r).
Aside from the
results shown in this
section, in which I
assess the accuracy
of equation (5), in
the examples I
present later,
expected winning
percentages for a
single team in a
single season are
computed using a
constant run scoring
rate; however when
analyzing composite
results (i.e. the
results of several
teams and seasons
combined) a variable
run rate is used.

Average differences
between the quantity
generated by
equation (5) and
actual winning
percentage as a
function of run different
These differences are fai
equation (5) seems to be

Variation of expe

If equation (5) describes
interesting property rega
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Figure 1. Average differences between the expected and actual winning percentages for teams in the
American League for the years 1997-2002, as a function of the run differential. The left-hand panel is
based on a constant run scoring rate, while the right-hand panel uses a run scoring rate that depends on
the final run margin.  The expected values were computed using equation (5).  Error bars are the
standard deviations.
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ial, using scores from games played by American League teams for the years 1997-2002, are shown in Figure 1.
rly typical, as similar results are obtained for any single season for the past twenty years.  These results suggest that
 a reasonably reliable means for calculating expected winning percentage at a specified run differential.

cted winning percentage with the final margin of victory/defeat

 how a team’s expected winning percentage depends on the final run differential, then further analysis reveals an
rding the nature of this variation.

2) with respect to r, gives, after simplification:
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Equation (9) makes it clear that, provided m1 and m2 are constant, Wr(m1, m2) has a positive gradient whenever m1 >  m2, and a negative
gradient whenever m1 <  m2.  The implication of this is that teams that on average outscore their opponents are expected to have their lowest
winning percentages in close games. Their likelihood of winning increases as the run differential increases.  On the other hand, teams that on
average are outscored, have their maximum winning percentage in one-run games. Their likelihood of winning decreases as the difference in
runs increases.  Thus, it is important to note that good teams that have their lowest winning percentages in close games are performing as
expected.

As an example, expected and
actual winning percentages for the
1929 Yankees are shown in Figure
2.   This suggests the Yankees
performed better than expected in
close games, but faltered
somewhat in games decided by
larger margins.

Example: A method for
evaluating managerial
performance (perhaps)

The ability to calculate an
expected winning percentage at a
specified run differential presents
several opportunities for analysis.
In the following, I provide an
example that shows that manger-
of-the-year award winners have, in
the past six seasons in the American L
two conclusions that can be drawn from

Better than expected perform
managers (i.e. by a manager-

Or, equally tenable:

Better than expected perform
share of close games will ove
overachievement, as close ga

Determining which of these is true is a

Figure 3 shows results for American L
typical for games played by American 
apparent:

1. Average actual winning perc
manager-of-year award winn

2. Insignificant average differen
3. Insignificant average differen

for the league as a whole.
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Figure 2. Expected and actual winning percentages for the New York Yankees
in the 1929 season, as a function of the run differential.
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eague, been charged with teams that, on average win more than their share of close games.  There are
 such an observation:

ance in close games is a reflection of managerial skill, and teams managed by exceptional all-around
of-the-year award winner) have performed accordingly.

ance is an important criterion for the manager-of-the-year award, and teams that win more than their
rachieve in general (overachieving in close games is a particularly important prerequisite of
mes are far more frequent than games with large differences in run totals).

 matter of establishing cause and effect, and I am unsure as to how this might be done.

eague teams for the seasons 1997-2002.  I have done several additional tests, and these results are
League teams in the past twenty seasons.  On Figure 3, the following expected characteristics are

entages that significantly exceed expected winning percentages in close games for teams managed by
ers.
ces between actual and expected winning percentages in close games for the league as a whole.
ces between actual and expected winning percentages, for games that end with large run differentials,
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Significant average differences between actual and expected winning percentages for games that end with large run differentials,
for teams managed by manager-of-year award winners.

This latter observation may be an artifact attributable to the fact that there are larger deviations between actual and expected percentages at
higher run differentials (see Figure 1).  Nevertheless, even if this is a true representation, suffering lower winning percentages at higher
margins does not nullify the value of producing higher percentages at low margins, as close games occur far more frequently than do games
with large margins of victory/defeat.

Finally, it is interesting to note that large
differences between expected and actual winning
percentages in one-run games are at least partially
correlated with the voting for the manager-of-the
year award.  This was particularly true in the 2002
season.  Table 1 shows the comparison between
the teams with the maximum differences between
expected and actual winning percentages in one-
run games, and the voting results.

Summary

I have shown that the well-known Pythagorean
winning percentage formula is actually a team’s
probability of winning two-run games, assuming
run scoring is governed by Poisson processes.  It
remains unclear as to why this probability is
consistently close, over many different teams in
many different seasons, to actual overall winning
percentages. This is particularly true in light of the
fact that I have presented a formula that does not
depend on the run differential, but is less accurate

than this famous formula.  Perhaps this
somewhat cursory study will serve as
motivation for a more thorough investigation
that addresses this rather interesting
phenomenon.

While this study fails in its original objective
to provide a conceptual understanding of the
Pythagorean formula, my efforts are not
entirely fruitless, as a potentially useful
formula for computing the conditional
probability of victory, given a final run
differential, has been derived.  I refer to this
quantity as the expected winning percentage as
a function of run differential, as on average,
albeit in a test of limited scope, expected and
actual results are similar to one another.  This
equation makes it possible to calculate
expected variations in winning percentage with
run differentials for both good and bad teams.
These expected variations suggest that good
teams should not be expected to have their highest win
the run-dependant winning percentage equation might
recent manager-of-the-year award winners achieve bet
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Figure 3: Comparison of average differences between expected
and actual winning percentages for teams in the American
League for the years 1997-2002.  Better than expected
performances are indicated by positive differences. Average run
rates are variable, and depend on the final margin of
victory/defeat.
Team

Difference between
expected and actual
winning percentage
in one-run games Team

Points
earned in
vote for
manager of
the year

Oakland 0.169 Anaheim 116
Minnesota 0.127 Oakland 74
Anaheim 0.074 Minnesota 59
Toronto 0.020 New York 3

Table 1. Comparison between voting results for manager-of-the-year
award, and teams with the maximum differences between actual
and expected winning percentages in one-run games.  As before,
better than expected performances are indicated by positive
differences.
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ning percentages in close games.  Finally, a method is presented to demonstrate how
 be used to assess managerial performance.  The results of this method suggest that
ter than expected results in close games.
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Study

Toying with “The Favorite Toy”
Shane Holmes

Bill James developed “The Favorite Toy” as a method for estimating a player’s chance of reaching a career goal (e.g., 3000 hits).  Here,
the author tests the performance of the Toy, by checking how well its predictions matched what eventually occurred.

The Favorite Toy (TFT) is a Bill James
invention for estimating the likelihood that a
player will reach a specific career milestone.
In his annual abstracts, James used TFT to
handicap a player’s chances of reaching 3,000
hits.

The method, and an example, can be found in
the boxes on this page and the next.

Testing the Toy

A few months ago, Baseball Primer
contributor “Tangotiger” suggested testing
TFT to see how accurate its predictions have
been to date.  I took the bait.

The Toy’s test is based on the idea that over a
large group of players, the total of their project
probabilities of reaching a goal should equal
the number of players who actually do reach it.
For instance, if eight players each have a 25%
chance of reaching 3,000 hits, and TFT is
accurate, then two of the eight should actually
make it.

I started by looking at all players (active and
retired) who reached the halfway mark of a
career milestone, and finding each player’s age
when he attained that point.  For the 500 HR
milestone, for example, I compiled a list of
players who had hit 250 or more HR, and their
ages when they hit number 250.1    Then I
computed every player's TFT chance of
reaching the milestone (ignoring hitters whose
chance falls below 0 and capping hitters at a
1.000 clip; we do this not because it improves
the analysis - it doesn't - but because TFT is
after all a toy).  The sum of all of those
players’ chances should come close to
equaling a count of the total number of players
who succeed in attaining the milestone.

                                                                
1 Because I don’t have the exact dates on which players r
halfway point.  If a player in pursuit of 500 HR reached 
been the younger age.  In other words, I did not simply su
The Favorite Toy

TFT has four components and a result.

Need Hits
Need hits is the number of hits needed to reach the goal.  Let's say the goal is 500
career home runs.  If a player has accumulated 50 roundtrips in his career thus far, then
his “need hits” equals 450.

Years Remaining
“Years remaining” is the number of seasons a player has left in his career.  It’s
estimated by the formula 24 - 0.6 * (age).  This formula gives 9.0 remaining seasons to
a 25-year-old, 6.0 to a 30-year-old player, and 3.0 to a 35-year-old player.  A caveat: A
regular player is always estimated to have at least 1.5 remaining seasons.

Established Hit Level
The “established hit level” is a weighted formula designed to equal the number of hits
the player achieves on a seasonal basis.  For year 2003, the established hit level would
be found this way:  First, find the sum of the player’s 2000 hits, 2 times his 2001 hits,
and 3 times his 2002 hits.  Then, divide the sum by 6.  Another caveat: A player's
performance level must exceed or be equal to 75% of his most recent season
performance.  This protects against certain intrusions in a great player's career, such as
a season-long injury or a labor-related work stoppage.

Projected Remaining Hits
This projection is the product of the above two steps: Years Remaining multiplied by
the Established Hit Level.

Result

Calculate

5.0RePr −
NeedHits

smainingHitojected

This is the Favorite Toy’s estimate of the probability of the player reaching his goal.
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eached 250 HR or 1,500 base hits, I had to estimate each player’s age at the time he reached that
number 250 early in a season but his birthday fell late in a calendar year, he was considered to have
btract every player’s birth year from the relevant major league season year.
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I tested TFT in this manner for two milestones: 3,000 hits, and 500 HR.

Test: 3,000 Hits

Going into 2003, 506 hitters had reached 1500+ hits.  I
looked at every player with 1,500 base hits and found his
TFT-handicapped chances at 3,000.  According to TFT, on
the date they reached 1500, 5 of the 506 players had a 50+%
chance at getting the remaining 1500 hits they needed to
reach 3000.

Name Chance
Cobb* 0.7768
Hornsby 0.5608
Sisler 0.5465
Keeler 0.5080
Aaron* 0.5036

* These players eventually accumulated 3000 or more base hits

When one adds those chances, the sum is nearly 2.9.  This is
close to the number of hitters from that output who
succeeded (two).  So far, so good.

The next chart does for every chance group what I have done
in words to describe the 50+% chance group.  (As you can
see by following the second row across, the chart displays
the figures about which I just wrote, 2.9, 5, and 2.)

Chance of
achieving 3,000
hits

Number of players
in sample

TFT
num

50% or better   5  2.
25% to 49%  41 14.
10% to 24%  65 10.
 0% to  9% 395  2.
Total 506 30.

In this study, most of the players have low chances because I inc
example, finished his career right on 1,500.  He obviously didn’t
James designed TFT for great players, but he never went far in d
bar at the halfway mark of the 3,000-hit milestone.  That seemed
0-9% row as it was in the first row.  In both cases, reality and the

And the overall total of 30.4 estimated, 25 actual is also pretty g

However, it’s important to note that included among these 506 h
own population.  Because of the inclusion of actives, the Toy’s e
mark.  That is, by the time all careers have ended, the number of
TFT Example – Chipper Jones

Chipper Jones had 253 homeruns at the close of the 2002 season.
What were his chances of reaching 500 by the end of his career?

His need HR was 247;

His years remaining was 6 (he was 30 years old by the time he slugged
homerun #253);

His last three seasons of 26 HR (in 2002), 38 (in ’01), and 36 (in ’00)
give him an established HR level of 31.7;

Multiplying 6 remaining seasons by 31.7 HR gives Chipper 190 HR
projected remaining home runs from 2003 until the end of his career;

Dividing is 190 projected hits by his 247 need hits, then adding 0.5,
gives a 26.9% chance that Chipper Jones will reach 500 career home
runs.
Page 16

 estimate of
ber successful

Actual number
successful

9  2
0 13
6  5
9  5
4 25

luded every player who reached the 1,500 standard.  Manny Sanguillen, for
 have any chance at 3,000 when he made it to the halfway mark and retired.
escribing whose chances should not be handicapped.  For my study, I set the
 fair if not generous.  And, in fact, the toy’s effectiveness is as evident in the
 estimate are close enough for the casual use befitting a toy.

ood.  The favorite toy acquits itself well.

itters are several active players.  The data for this study was treated as its
stimates should exceed the count of actual real-life players who met the
 successful players will likely grow from 25.
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Age

To check if TFT is also accurate within age groups, I repeated the table after grouping the above players by age.  Here are players under 30
years old:

Chance of
achieving 3,000
hits

Number of players
in sample

TFT estimate of
number successful

Actual number
successful

50% or better  5  2.9  2
25% to 49% 36 12.6 10
10% to 24% 17  3.1  2
 0% to  9%  2  0.1  0

Again, TFT seems accurate.

The age 30-34 group:

Chance of
achieving 3,000
hits

Number of players
in sample

TFT estimate of
number successful

Actual number
successful

50% or better   0  0.0  0
25% to 49%   5  1.4  3
10% to 24%  48  7.5  3
 0% to  9% 2882  2.8  5

Despite the odds given to them, several players who reached 1,500 hits while between ages 30-34 managed to hang around for another
1,500.

The bottom row, where the number of real-life hitters actually exceeds the estimate, is misleading.  Paul Molitor and Rickey Henderson are
part of the group, and both have odds greater than 8%.  Dave Winfield, whose chance was 5.4%, would have also been around 8% had the
work stoppage in 1981 not lowered his hit total.  If these three players had been in the 10-24% group, their presence would have enabled that
group to shadow TFT’s estimate.

The two exceptional cases belong to Nap Lajoie (5.3%) and to Cap Anson (0.0%), and both carry reasonable explanations.

Lajoie reached 1,500 hits in 1905, a season in which he played just 65 games and racked up 82 hits.  When James created TFT, he protected
against the “established hit level” failing to reach 75% of the most-weighted season’s total.  He did not, however, protect against labor
disputes, injuries, and other career intrusions that might have interrupted the most-weighted season.  If one substitutes Lajoie’s 1906 season
total for 1905, Nap’s chances soar to around 31%.

Cap Anson, meanwhile, played most of his career in the 19th Century, and we have come to expect statistical surprises in cases like his.  The
most games Anson had played in any single season up to 1885 were 112.  If one adjusts for season length, Anson’s hit totals (and thus his
chance at 3,000) rise accordingly.

For completeness, here’s the 35+ group:

Chance of
achieving 3,000
hits

Number of players
in sample

TFT estimate of
number successful

Actual number
successful

All 35+ players 1053  0.0  0

                                                                
2 Just 67 of the 288 players from the 0-9% chance group had a realistic shot; most in the group were 0%.
3 Only about 5% of these players finished their careers with 2000 or more base hits.
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Test: 500 Home Runs

Going into 2003, 151 hitters had reached 250+ HR.  According to TFT, on the date they reached 250, 19 of the 151 players had a 50+%
chance to reach 500.

Name Chance
Foxx 0.9872
Griffey Jr. 0.9716
Rodriguez! 0.97
Killebrew* 0.868
Sosa 0.864
Kiner 0.8152
Gonzalez 0.7844
Aaron* 0.6492
Banks* 0.644
Ruth* 0.622
Snider 0.6132
Mantle* 0.5972
Mathews* 0.5864
Ramirez 0.5692
Gehrig 0.534
Schmidt* 0.52
Ott* 0.5192
Thome 0.516
* reached 500 HR
! capped

Once again, grouping TFT chance estimates, we find:

Chance of
achieving 500 HR

Number of
players in
sample

TFT estimate
of number
successful

Actual number
successful

Active at end
of 2002
(excluding 500

HR hitters)4

50% or better  19 13.1  9  6
25% to 49%  26  9.2  7  9
10% to 24%  23  2.5  1  3
 0% to  9%  83  0.0  0 11
Total 151 24.8 17 29

The favorite toy again does well, especially if you make an allowance for the number of active players who will eventually reach the goal.

Again, here are the breakdowns by age, starting with players aged 25-29:

Chance of
achieving 500 HR

Number of
players in
sample

TFT estimate
of number
successful

Actual number
successful

Active at end
of 2002
(excluding 500
HR hitters)

50% or better  17 12.1  8  5
25% to 49%  10  3.0  4  2
Total  27 15.1 12  7

                                                                
4 Considering the furor surrounding the supposed dilution of the 500 HR Club, I’ve added this column to Part 2.
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The age 30-34 group:

Chance of
achieving 500 HR

Number of
players in
sample

TFT estimate
of number
successful

Actual number
successful

Active at end
of 2002
(excluding 500

HR hitters)5

50% or better   2  1.0  1  3
25% to 49%  16  5.3  3  7
10% to 24%  11  1.9  1  3
 0% to  9%  58  0.6  0  8
Total  87  8.8  5 21

And the age 35+ group:

Chance of
achieving 500 HR

Number of
players in
sample

TFT estimate
of number
successful

Actual number
successful

Active at end
of 2002
(excluding 500
HR hitters)

All   37 0.0 0 5

Again, if you take into account the active players still to come, the Favorite Toy seems quite accurate.

Active Players

Here are the top ten active players with a chance at 3,000 hits (calculations heading into 2003):

Name Chance
RAlomar 0.8824
ARodriguez 0.3988
Guerrero 0.3649
Jeter 0.3616
Williams 0.2541
Tejada 0.2041
Erstad 0.1954
CJones 0.1926
Damon 0.1726
Pujols 0.1476

Other notables: MOrdonez 0.1415, Palmeiro 0.1407, Helton 0.1273, Renteria 0.1101, Sosa 0.1034, LCastillo 0.0982, Bagwell 0.0977, Vidro
0.0843, Ramirez 0.0838, Rolen 0.0835, Erstad 0.0826, Olerud 0.0657, Berkman 0.0538, Soriano 0.0418, Sweeney 0.0372, Ichiro 0, Kent 0,
Vizquel 0, Grace 0, Piazza 0, Thomas 0, Bonds 0, Griffey Jr. 0, AJones 0, Sheffield 0, Garciaparra 0, Eckstein 0, Biggio 0, Martinez 0,
Franco 0.

                                                                
5 Considering the furor surrounding the supposed dilution of the 500 HR Club, I’ve added this column to Part 2.
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And the top ten active players with a chance at 500 HR (calculations heading into 2003):

Name Chance
Sosa* 1.0000
Palmeiro* 1.0000
McGriff* 1.0000
Griffey Jr.* 1.0000
ARodriguez* 1.0000
Thome 0.9024
MRamirez 0.6526
Guerrero 0.6017
Bagwell 0.5900
AJones 0.4952

*- capped

Other notables:  Green 0.4323, Delgado 0.4160, JGonzalez 0.3547, Piazza 0.3196, JaGiambi 0.3007, CJones 0.2692, Berkman 0.2544,
Pujols 0.2385, Chavez 0.2291, BGiles 0.2147, Sheffield 0.2125, Thomas 0.1532, Soriano 0.1382, Burrell 0.1129, Vaughn 0.0229, Galarraga
0, MWilliams 0, Vaughn 0, Burks 0, Walker 0, Gant 0, TMartinez 0, Sierra 0, Ventura 0, Palmer 0, EMartinez 0, Karros 0, Salmon 0, Kent
0, LGonzalez 0.

Aaron

TFT wouldn’t be much fun one didn’t ask who if anyone will break Aaron's record.

Name Chance
A. Rodriguez 0.3969
Sosa 0.2588
Bonds 0.0822

TFT underestimates Bonds’ career length (he receives only 1.5 years left under TFT rules), but this is intentional because he is clearly an
outlier.

Shane Holmes, holmes@northwestern.edu♦
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