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Review 

Baseball-Oriented Statistics Text Focuses on the Math 
Ted Turocy 

 
Jim Albert’s new book, “Teaching Statistics Using Baseball,” is a supplementary text aimed at teachers, rather than a guide for the 

sabermetrically-savvy BTN reader. 
 

 
This new offering from the coauthor of Curve Ball presents a set 
of baseball-themed case studies and exercises suitable for use as  
additional or ancillary material for an introductory course in 
probability and statistics. 
 
This book is 
part of the 
Mathematical 
Association of 

 
The book excels in choosing examples which make good 
“sabermetric sense.”  For example, on-base percentage, rather  
than batting average, is the thematic statistic used in examples for 
the binomial and negative binomial distributions.  The case 
studies for regression feature good discussions of evaluating 
offensive statistics in terms of their ability to predict run scoring, 
while the chapter on statistical inference focuses in large part on 
methodologies for understanding which situational hitting splits 
are, and are not, statistically significant. 
 
Readers who enjoyed Curve Ball will find that many of the 
examples in that book reappear here, in expanded presentations 
suitable for beginning statistics students.  These are augmented 

by a trove of 
exercises; nearly 
half the pages (by 
rough count) are 
devoted to practical 
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America's 
Classroom 
Resource 
Materials 
series, and as 
such, the 
choice of the 
word 
“teaching” as 
opposed to 
“learning” in the title appears to have been deliberate.  The 
material is organized into nine chapters, each consisting of a 
sequence of case studies, with topics ranging from summarizing 
the distribution of team on-base percentages to Markov modeling 
of the progress of an inning.  The case studies are not generally 
written to stand on their own in teaching a concept.  For 
example, the case studies on least-squares regression do not 
present any of the relevant theory or formulas, focusing instead 
on the use and interpretation of regression analysis. 
 
 
 

exercises for 
mastering the 
relevant statistical 
concepts.  These 
exercises are hands-
on, focusing on 
computation and 
manipulation of 
actual datasets. 
 

As a By The Numbers reader, should you pick this book up?  
Because of the focus of the text, only true completists among the 
sabermetrically-savvy would want to make this book a priority 
for their bookshelf. On the other hand, with its focus on basic 
concepts and statistical methodology, it could be ideal for readers 
who are interested in understanding more about what goes on in 
these pages, or are interested in undertaking research of their 
own, but whose last statistics course was a while ago, or fuzzy in 
their minds. (Or both!)   
 
Ted Turocy, arbiter@econmail.tamu.edu ♦ 
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Summary 

Academic Research: More on Home Field Advantage 
Charlie Pavitt 

 
The author reviews two recent academic papers on home field advantage. 

 
 
This is one of a series of reviews of sabermetric articles published in academic journals.  It is part of a project of mine to collect and 
catalog sabermetric research, and I would appreciate learning of and receiving copies of any studies of which I am unaware.  Please visit 
the Statistical Baseball Research Bibliography at its new location www.udel.edu/communication/pavitt/biblioexplan.htm .  Use it for your 
research, and let me know what is missing. 
 
 
Kevin G. Quinn, Paul B. Bursik, Christopher P. Borick, and Lisa Raethz, Do New Digs Mean More 
Wins?  The Relationship Between a New Venue and a Professional Sports Team's Competitive 
Success, Journal of Sports Economics, August 2003, Volume 4 Number 3, pp. 167-182 
 
Jack C. Watson II and Andrew J. Krantz III, Home Field Advantage: New Stadium Construction and 
Team Performance in Professional Sports, Perceptual and Motor Skills, December 2003, Volume 97 
Number 3, pp. 794-796 
 
Back in the February, 2003 issue of BTN, I reported on a study by Richard Pollard showing evidence of a slight decline in home winning 
percentage for teams that moved to a new ballpark in the same metropolitan area between 1988 and 2001, from .547 to .537.  Given our 
ignorance of the causes of home field advantage, this was a helpful study, as it implies that familiarity with the home field is likely part of an 
explanation if teams do worse after moving to a less familiar park.  Now we have two more studies of the same issue published close to 
simultaneously (yes, in the world of academe four months apart is close to simultaneous).  Not surprisingly, none of these research groups 
appears aware of the others' work; what is more, not even one of the articles cited by Quinn et al. is also cited by either Watson/Krantz or 
Pollard, and only two are dually cited by both Watson/Krantz and Pollard, more evidence in support of the unfortunate fact that researchers 
in the social sciences usually ignore studies outside of their home discipline. 
 
What is more, the findings of both Quinn et al. and Watson/Krantz are basically identical with one another and opposite of Pollard's.  
Watson and Krantz found the fourteen Major League Baseball teams that switched ballparks between 1950 and 1996 to increase their 
winning percentage from .523 before the move to .564 afterward, a statistically significant difference.  These comparisons are somewhat 
messy, as, for example, a team that switched during the very end of that period would have far more data points before the move than after.  
Perhaps this unequal-sample-size problem cancelled out across all the moves in the data set, but it is impossible to say given the data 
presented.  Further, it seems that Watson and Krantz included teams that moved between metropolitan areas in their analysis; again, the 
report is unclear on this.  Quinn et al., in contrast, compared the seven years before the switch with the seven years after, and also compared 
the won-loss trajectory of teams that switched with that for teams that did not, in order to see if changes due to stadium switches are merely a 
function of the normal ups and downs in team fortune over the years.  Despite the better method, they got analogous results; over the 1982 to 
1996 period, MLB teams increased significantly from .498 before the switch to .541 after.  Incidentally, neither research group found NFL or 
NBA teams to improve with new facilities; Quinn et al. found a marginally significant increase in the NHL (probability of less than .10), 
from .500 to .529. 
 
Interestingly, Watson and Krantz's speculative explanations for their findings imply that home team familiarity with their new ballpark may 
be involved, the same explanation given by Pollard for his contradictory findings.  Anyway, we are back on square one, and so again I quote 
myself; we still have no good idea what causes home field advantage. 

 
 

Call For Help  
 
I have been unable as yet to find copies of the first two volumes of the Journal of Sports Economics.  If anyone in SABRland has access to 
this journal and can get me copies of sabermetric articles (not including those solely concerned with MLB finances), I would be most 
appreciative and happy to reimburse expenses. 
 
Charlie Pavitt, 812 Carter Road, Rockville, MD, 20852, chazzq@udel.edu ♦ 

http://www.udel.edu/communication/pavitt/biblioexplan.htm
mailto:chazzq@udel.edu
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Study 

Do Hitters Get Their Expected RBIs? 
Cyril Morong 

 
Are some hitters “good RBI guys” in the sense that they are able to drive in more runners than you’d expect from a player with their same 

stats, and the same number of runners on base?  In this study, the author compares players’ actual RBIs to their expected, to see if any 
consistently exceed or fall short of expectations. 

 
 

 
Taking into account the number and position of runners on base for a given hitter, do hitters get the number of RBIs that you’d expect?   
 
For the most part, yes.  If we assume that hitters hit about the same way with runners on base as they do otherwise, they generally get about 
the number of RBIs we would expect based on how many baserunners there are and what bases they are on. 
 
To calculate a hitter’s number of expected RBIs, I first computed how many times a man was on first base when he batted (regardless of 
whether the other bases were occupied), how many times a man was on second base, and how many times a man was on third base.  Then I 
computed his single, double, triple and home run frequency, assuming he batted the same way with runners on base as he did for all of his at 
bats.  Then, I computed, based on that, how many RBIs were expected for each of the bases. 
 
For example, if there were 2000 runners on first during the period (the data is explained below), and the batter’s home run frequency is 3%, 
then we would expect him to hit a home run and drive in the runner on first 60 times – which means 60 RBIs for that case (“home run 
driving in runner on first”).  Then we also assume that he hits home runs 3% of the time when runners are on second base and third bases.  
We repeat for triples. 
 
With singles and doubles, things are a little different.  Of course, runners on second and third will score on a double, and a runner on third 
will score on a single.  But I had to make assumptions about how often runners on first would score on a double and how often runners on 
second would score on a single.  I assumed that 42.6% of runners scored from first on doubles and 63.4% scored from second. These were 
the major league averages for the years 1987-2000 that I got from John Jarvis’s website (http://knology.net/~johnfjarvis/stats.html).  
 
As an example, let’s look at Jay Bell.  Below is how many runners were on base when he batted, his hit frequencies, his expected RBIs in 
each case, and how many total RBIs we would have expected him to get (I had to adjust the at-bat numbers I found at the CNN/SI site; this is 
explained in the section entitled “Data” below).  This only includes RBIs from hits; RBIs from sacrifice flies and walks with the bases loaded 
are not included. 
 

 
RBIs driving 
himself in 

RBIs driving in 
runner on 1st 

RBIs driving in 
runner on 2nd 

RBIs driving in 
runner on 3rd Total RBIs 

AB where possible 7219 AB 1814 AB 1396 AB 708 AB  
1B hit (17.73% of AB)   156.93 125.54 282.47 
2B hit (5.4% of AB)  41.75 75.42 38.25 155.42 
3B hit (0.93% of AB)  16.84 12.96 6.57 36.37 
HR hit (2.66% of AB) 192.02 48.25 37.13 18.83 296.23 

Total RBIs 192.02 106.84 282.44 189.19 770.49 
 
If Jay Bell had the same hit frequencies with runners on base as he did overall, we would expect him to get 770.49 RBIs.   
 
Bell gets 192 expected RBIs from driving himself in from home runs since .0266*7219 = 192.02.  He gets 156.93 expected RBIs from his 
singles driving in runners on 2nd, since 1396*.1773*.634 = 156.93.  He gets 41.75 expected RBIs from runners on 1st driven in by doubles, 
since 1814*.054*.426 = 41.75.  He gets 16.84 expected RBIs driving in runners on 1st with triples, since 1814*.0093 = 16.84.  (I assumed 
that all runners score on triples, and that all runners on 3rd score on singles and all runners on 2nd score on doubles.) 
 
Adding up all of the individual cases gives 770.49 expected RBIs.  During the years 1987-2001, Jay Bell actually got 776 RBIs, with 
sacrifice flies and bases loaded walks excluded. 
 
Below is a list of the 61 players who had 6000 or more plate appearances from the years 1987-2001 and who also had data listed at the 
CNN/SI site.  The totals are per 600 at bats, or about a full season. 

http://knology.net/~johnfjarvis/stats.html
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Name Actual Predicted Difference Name Actual Predicted Difference 
Tino Martinez 103.93  93.75 10.18 Mark McGwire 127.26 125.02  2.24 
Jeff Bagwell 113.06 103.81  9.25 Matt Williams  99.05  96.96  2.10 
Frank Thomas 117.90 109.89  8.01 Cal Ripken  79.41  77.61  1.81 
Wally Joyner   84.48  77.04  7.44 Fred McGriff 100.76  99.09  1.67 
Robin Ventura  90.57  83.67  6.90 Tim Raines  65.42  63.76  1.67 
Dante Bichette  99.95  93.10  6.85 Edgar Martinez  97.80  96.44  1.36 
Harold Baines  94.28  87.51  6.77 Ken Caminiti  85.88  85.16  0.72 
Mark Grace  76.18  69.97  6.21 Jay Bell  64.50  64.04  0.46 
David Justice  103.19  96.99  6.21 Gregg Jefferies  66.30  65.95  0.36 
B.J. Surhoff  75.98  70.02  5.96 Brady Anderson  63.65  63.36  0.30 
Juan Gonzalez  123.21 117.78  5.43 Rafael Palmeiro  96.95  96.67  0.29 
Luis Gonzalez  87.50  82.46  5.05 Chuck Knoblauch  51.53  51.75 -0.22 
John Olerud  87.83  83.08  4.76 Tony Fernandez  60.07  60.45 -0.39 
Greg Vaughn 100.19  95.57  4.62 Ruben Sierra  89.29  89.83 -0.55 
Paul O'Neill  94.80  90.19  4.60 Ron Gant  86.37  87.04 -0.66 
Tony Gwynn  71.58  67.14  4.44 Roberto Alomar  71.11  71.86 -0.75 
Travis Fryman  86.69  82.43  4.26 Marquis Grissom  60.58  61.59 -1.02 
Gary Sheffield  98.15  94.06  4.08 Bobby Bonilla  90.35  91.37 -1.02 
Eric Karros   89.70  85.73  3.98 Barry Larkin  68.58  70.52 -1.94 
Jay Buhner 106.52 102.96  3.56 Devon White  64.56  66.50 -1.94 
Bernie Williams  93.49  89.97  3.52 Steve Finley  66.49  68.46 -1.97 
Barry Bonds 111.72 108.35  3.36 Dave Martinez  55.81  57.81 -2.00 
Ken Griffey Jr. 112.30 108.94  3.36 Craig Biggio  59.81  61.86 -2.05 
Mark McLemore  51.36  48.06  3.30 Omar Vizquel   47.01  49.76 -2.75 
Kenny Lofton  55.16  51.87  3.29 Rickey Henderson  55.40  58.45 -3.05 
Larry Walker 107.72 104.48  3.24 Benito Santiago  71.44  75.83 -4.39 
Jose Canseco 111.68 108.56  3.12 Ellis Burks  93.29  99.86 -6.57 
Andres Galarraga 102.89  99.77  3.12 Wade Boggs  56.42  63.25 -6.83 
Sammy Sosa 108.32 105.25  3.07     
Ray Lankford  86.15  83.20  2.95     
Delino DeShields  52.73  50.03  2.69     
Will Clark   93.75  91.32  2.42     
Todd Zeile  80.47  78.20  2.27     

 
 
Some observations: 
 
47 of the 61 hitters (77%) were predicted to within 5 RBIs per 600 at bats.  So this is reasonably accurate (the correlation between the actual 
RBIs and predicted RBIs is .987).  But there are only 16 hitters who had fewer RBIs than expected.  I expected about half the hitters to have 
more RBIs than expected, and half to have less.  A few RBIs come from groundouts and I don’t have data on those.  But there are not many 
such cases.1 
 
Maybe my list of 61 players tends to be populated by very good hitters (who else would last so long?).  They tend to bat in the middle of the 
order and the runners who are on base might be faster than average since they would be the 1 and 2 hitters.  Also, these hitters may have 
more than average power.  Maybe their singles and doubles go farther (and travel faster) than average, making it easier for runners to score. 
 
Notice that the players who are above expectations also seem to be power hitters who hit in the middle of the order.  The players who are 
negative tend to be players who batted at the top or bottom of the order.  If they were at the top of the order, it might be partly because of 
their speed.  So they may get more singles and doubles as a result of speed and the runners who are on already may not score.  Also, if they 
have below average power, maybe their doubles and singles don’t go as far as they do for the power hitters, making it harder for runners to 
score. 

                                                                 
1 Using Retrosheet files, Cliff Otto found that there were about 36 groundball RBIs per team in major league baseball in 2003.  That would work out to about 
4 per lineup slot. If every player’s expected RBIs per season were raised by 4, there would be a much more even balance between players who had more RBIs 
than expected and those who had fewer.  Clem Comly, also using Retrosheet files, found that the average AL team in 1966 had about 25 groundball RBIs.  
His figure is lower than Otto’s because he removed sacrafice hits, errors, and fielders choices where no out occurred.  (Both references from e-mail 
correspondences with the author.) 
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But the bottom line is that the vast majority of hitters are predicted fairly well, and only one was off by more than 10 RBIs. 
 
 
Alternate methods 
 
The assumed runner advancement is for both leagues.  I also tried using different figures for hitters from each league.  For the AL, 64.5% of 
runners scored from second base on singles and 39.5% scored from first base on doubles. For the NL, these were 62.3% and 45.7%, 
respectively.  For any players who did not get at least 80% of their at bats in one league, I used a weighted average.  Then I not only used the 
league runner advance figures, but I also took into account the fact that, on average, batting average is higher with runners on base (and 
HR% is lower).  The differences are not great.  I also tried it with RBIs from walks.  Interested readers may e-mail me for details on these 
alternative methods.  The results are similar to those already mentioned here. 
 
 
The Data 
 
I came across a discrepancy in the CNN/SI data I used; their data appeared to be incorrect for all players.  Take Rafael Palmeiro, for 
example.  I added up the at-bats that CNN/SI reported for Rafael Palmeiro for each situation where runners might be on base: 
 
Runner on 1B  1262 
Runner on 2B   714 
Runner on 3B   236 
Runners on 1B, 2B  614 
Runners on 1B, 3B  249 
Runners on 2B, 3B  142 
Bases Loaded   163 
 
This adds up to 3380.  But the discrepancy comes in where, in a separate line, they report that he had 3852 at-bats with runners on base, not 
3380.  With no runners on, they give him 4521.  Adding this to 3852, you get 8373, the same total that he has in the Lee Sinins sabermetric 
encyclopedia (for 1987-2001).  So the 3852, not the 3380, must be right. 
 
Then I looked at how many runners on base at-bats were missing for Palmeiro.  That would be 3852 - 3380 or 472.  The 3852 is 13.96% 
higher than the 3380.  I assumed that Palmeiro got those other 472 at bats and that the seven base situations came up with the same 
frequency as they did for the at-bats listed.  So I raised the at-bats with a runner on first 13.96%, the at-bats with a runner second 13.96%, 
and so on.  I did this for all the hitters and it raised the average RBI opportunities per at bat to 1.62 from 1.52.  This is more consistent with 
other studies I have done.  E-mail me for details. 
 
If you went to the CNN/SI site to look for these discrepancies, you would not be able to find them.  They no longer list all of the base out 
situations.  They leave one out, the one with runners on first.  So you can’t check the total at bats from the seven on-base situations with the 
total given in the separate “runners on base” line.  Since they had a discrepancy before, it might still exist and you could not detect it. 
 
 
Cy Morong, cyrilmorong@aol.com ♦ 

mailto:cyrilmorong@aol.com
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Informal Peer Review 
 

The following committee members have volunteered to be contacted by other members for informal peer review of articles. 
 

Please contact any of our volunteers on an as-needed basis - that is, if you want someone to look over your manuscript in 
advance, these people are willing.  Of course, I'll be doing a bit of that too, but, as much as I'd like to, I don't have time to 

contact every contributor with detailed comments on their work.  (I will get back to you on more serious issues, like if I don't 
understand part of your method or results.) 

 
If you'd like to be added to the list, send your name, e-mail address, and areas of expertise (don't worry if you don't have any - I 

certainly don't), and you'll see your name in print next issue. 
 

Expertise in "Statistics" below means "real" statistics, as opposed to baseball statistics - confidence intervals, testing, sampling, 
and so on. 

 
 

Member E-mail Expertise                                        
Jim Box im.box@duke.edu Statistics 
Keith Carlson kcarlson2@mindspring.com General 
Rob Fabrizzio rfabrizzio@bigfoot.com Statistics 
Larry Grasso l.grasso@juno.com Statistics 
Tom Hanrahan HanrahanTJ@navair.navy.mil Statistics 
John Heer jheer@walterhav.com Proofreading 
Dan Heisman danheisman@comcast.net General 
Keith Karcher karcherk@earthlink.net Statistics 
Chris Leach chrisleach@yahoo.com General  
John Matthew IV john.matthew@rogers.com Apostrophes 
Nicholas Miceli nsmiceli@yahoo.com Statistics 
Duke Rankin RankinD@montevallo.edu Statistics 
John Stryker johns@mcfeely.interaccess.com General 
Tom Thress TomThress@aol.com Statistics (regression) 
Joel Tscherne Joel@tscherne.org General 
Dick Unruh                    runruhjr@dtgnet.com Proofreading 
Steve Wang scwang@fas.harvard.edu Statistics 
 
 

mailto:TomThress@aol.com
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Study 

Using Calculus to Relate Runs to Wins: Part II 
Ralph Caola 

 
How many extra runs does it take to create an additional win?  In the previous issue, the author presented a theoretical formula to answer 

that question.  Here, he compares those theoretical results to real-life MLB data. 
 
 
 
Introduction 
 
In part I of this article, in the last issue, I derived a formula for incremental differential runs per win. The main purpose of this article is to 
compare those theoretical results to actual data. For those who want to cut right to the chase, the results are shown in Table 2. 
 
 
Incremental Differential Runs Per Win – Theoretical 
 
Bill James' Pythagorean Theorem predicts winning percentage (W%) as a function of runs scored (Rs) and runs allowed (Ra).  The formula 
is: 
 

22

2

%
RaRs

RsW
+

=  
  
 
The Pythagorean Theorem can be written in terms of differential runs (Rd) and total runs (Rt) using 
 
Rd = Rs – Ra  and  Rt = Rs + Ra 
 
Substituting these expressions into the Pythagorean Theorem yields 
 

( ) ( )22

2)(%
RdRtRdRt

RdRtW
−++

+=   (equation 1) 

 
Rt and Rd can be expressed either in runs, or in runs per game. 
 
In the first article, I derived the formula for incremental differential runs per win (dRd/dW) from equation 1. Incremental differential runs per 
win is the number of extra differential runs a team needs to get one more win. The formula is 
 

( )
( )22

222

RdRtRt
RdRt

dW
dRd

−
+=      (equation 2) 

 
To use equation 2, Rt and Rd must be expressed in runs per game. 
 
 
Procedure 
 
The main purpose of this article is to determine how closely the results of equation 2 for incremental differential runs per win match actual 
data. The results of equation 2, I call theoretical incremental differential runs per win. The numbers derived from actual data, I call empirical 
incremental differential runs per win. To do this study, I used data for all team seasons from 1901-2003. The primary source was Sean 
Lahman’s database. The methods I used to do the calculations follow. 
 



Calculating Empirical Incremental Differential Runs Per Win  
 
The first step is to calculate an empirical value for incremental differential runs per win. Ideally, the way to calculate an empirical value 
would be to sort all teams by wins, then calculate average Rd for each number of wins.  Then, all you would need to do is calculate the 
difference between the average Rd for teams with n+1 wins and the average Rd for teams with n wins and you’d have the number of runs 
needed to get one more win.  Unfortunately, there are not enough team seasons at each value of wins to calculate a representative average.  
Also, 81 wins, for example, has different meanings in a 154 game season and a 162 game season.  So, I didn’t sort by wins, I sorted by 
Pythagorean winning percentage. 
 
The specific procedure follows: 
 
1.   I sorted teams by Pythagorean winning percentage.  I sorted by Pythagorean winning percentage rather than actual winning percentage in 
order to eliminate the biases due to luck for good and bad teams. 
 
2.  I grouped the teams in .050 ranges of Pythagorean winning percentage: range 1 – 0.301-0.350, range 2 – 0.351-0.400, etc. 
 
3.  I calculated average actual winning 
percentage and average differential runs 
per game (Rd) for each range. 
 
The results of these first three steps are 
shown in Table 1.  The table also shows 
average Rt for various ranges of 
winning percentage.  I needed to 
monitor Rt because, at any particular 
value of winning percentage, Rd 
depends upon Rt (see equation 1).  
Since Rt turned out to be nearly 
constant, it did not have a significant 
affect on Rd.  When necessary, I used 
Rt = 8.8 runs per game in subsequent 
calculations. 
 
4.  I calculated incremental differential 
runs per game by subtracting the average differential runs per game for adjacent winning percentage ranges.  For example: 
 

Table 1 -- Runs/Game data for teams by Pythagorean Winning 
Percentage 
 

 
Range # 

Pythagorean 
W% 

Average 
Actual W% 

Rt  
(R/G) 

Ave Rd 
(R/G) 

1 301-350 341 8.9 -1.54 
2 351-400 388 8.8 -1.08 
3 401-450 430 8.8 -0.65 
4 451-500 478 8.8 -0.20 
5 501-550 527 8.8  0.24 
6 551-600 567 8.7  0.63 
7 601-650 612 8.8  1.09 
8 651-700 656 8.7  1.51 
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Range 1: 301-350, Rd = -1.54 R/G 
Range 2: 351-400, Rd = -1.08 R/G 
Incremental differential runs per game between ranges: -1.08 – (-1.54) = 0.46 R/G 
 
5.  I calculated incremental differential runs per win (dRd/dW) by dividing incremental differential runs per game, from step 4, by the 
difference between the average Pythagorean winning percentages for adjacent ranges.  For example: 
 
Range 1: 301-350, Average W% = 0.341 
Range 2: 351-400, Average W% = 0.388 
Difference between avg. W%’s, range 1-2: 0.388 – 0.341 = 0.047 
Incremental differential runs per win (dRd/dW), between ranges: 0.46/0.047 = 9.8 R/G 
 
Rd is in units of runs per game and winning percentage is in units of wins per game.  So, dimensionally, when you divide Rd by W%, you’re 
dividing runs per game by wins per game and the result is runs per win. 
 
This result is shown in the first row, third column of Table 2. 
 
This means, for teams with Pythagorean winning percentages between about 0.341 and 0.388, if Team A had one more Pythagorean win than 
Team B, Team A would, on average, have 9.8 more differential runs than Team B. 
 
 



Calculating Theoretical Incremental Differential Runs Per Win  
 
In calculating the empirical derivative, I determined the slope of the line connecting the midpoints of adjacent winning percentage ranges. At 
what point on the theoretical Rd vs. W% curve should I calculate the theoretical derivative? 
 
I determined the best point would be midway between the two points used to calculate the empirical derivative.  Why use the midpoint?  
Think of a smooth curve, like a parabola, whose first derivative increases monotonically as the x-value increases.  (When the first derivative 
of a function changes monotonically, the function’s second derivative is either always positive or always negative.  This means the curve has 
no inflection points.)   It is reasonable to assume, that, if you connect any two points on the curve with a straight line, the slope of that line 
and the slope of the line tangent to the curve at a point midway between the x-values of the first two points would be approximately equal.   
Therefore, I calculated the theoretical derivative 
corresponding to winning percentage range 1-2 at 
 
Range 1: 301-350, Average W% = 0.341 
Range 2: 351-400, Average W% = 0.388 
W% = (0.388-0.341)/2 = 0.365 
 
Using equation 1 with W% = 0.365 and Rt = 8.8 
runs/game, 
 
Rd = -1.21 runs per game. 
 
Then, from equation 2 with Rd = -1.21 and Rt = 8.8 runs 
per game, 
 
dRd/dW = 9.3 runs per win. 
 
This result is shown in first row, fourth 
column of Table 2. 
 
 
Results - Comparing 
Empirical and Theoretical 
Values 
 
As seen in table 2, the theoretical values 
of dRd/dW match the empirical data 

Table 2 --  Comparison of Theoretical and Empirical 
Incremental Differential Runs per Win (pythagorean W%) 

 
 

Ranges 
Pythag. 

W% 
 Empirical 
dRd/dW(R/W) 

Theoretical 
dRd/dW(R/W) 

 
% Diff 

1-2 325-375  9.8 9.3   -5 
2-3 375-425 10.2 9.0   -12 
3-4 425-475  9.4 8.9   -5 
4-5 475-525  9.0 8.8    -2 
5-6 525-575  9.8 8.9   -9 
6-7 575-625 10.2 9.0  -12 
7-8 625-675  9.8 9.3   -5 

Table 3 -- Runs/Game data for teams by Actual Winning Percentage 
 

 
Range # 

 
Actual W% 

Average 
Actual W% 

Rt  
(R/G) 

Ave Rd 
(R/G) 

1 251-350 323 8.9 -1.59 
2 351-450 410 8.8 -0.78 
3 451-550 501 8.7  0.02 
4 551-650 590 8.7  0.77 
5 651-750 678 8.9  1.59 
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fairly well, but they all tend to be low.   
The average difference is 7%. 
 
In Tables 3 and 4, I compared empirical and theoretical 
values as I did previously, but with two small changes.  
Instead of sorting by Pythagorean winning percentage, I 
sorted by actual winning percentage.  Also I used wider 
ranges of winning percentage.  Previously I had 50 point 
ranges starting at 0.300 and ending at 0.700.  In Tables 3 
and 4, I used 100 point ranges starting at 0.250 and 
ending at 0.750.  The wider ranges seem to smooth out 
the variation in empirical values when Table 4 is 
compared to Table 2. 
 
Here, the theoretical values of dRd/RW match the empirical data quite well.  All the differences are 5% or less, and three are 1% or less. 
 
 
 
Ralph Caola, RJCSB25@aol.com ♦ 
 
 
 

Table 4 --  Comparison of Theoretical and Empirical 
Incremental Differential Runs per Win (actual W%) 

 
 

Ranges 
Actual 
W% 

 Empirical 
dRd/dW(R/W) 

Theoretical 
dRd/dW(R/W) 

 
% Diff 

1-2 301-400 9.3 9.3 0 
2-3 401-500 8.8 8.9 1 
3-4 501-600 8.4 8.9 5 
4-5 601-700 9.3 9.3 0 
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If your submission discusses a previous BTN article, the author of that article may be asked to reply briefly in the same issue in 
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Study 

Analyzing Small Ball in the Postseason 
Kevin Mello and Vijay Mehrotra 

 
Joe Morgan has argued that bunting and stealing are an important strategy in postseason play because of the scarcity of runs.  Here, the 

authors look at play-by-play data of World Series games to see if that’s really the case. 
 
 

 
Joe Morgan has repeatedly criticized the Oakland Athletics for not bunting and stealing in the postseason, on the grounds that with fewer 
runs being scored, teams need to be more aggressive.  Does Joe Morgan know something the A’s don’t?  The analysis that follows in this 
paper will show whether teams should change their strategy in the World Series.  It will attempt to answer two significant questions: 
 

• Do teams really score less in the postseason?   
• If scoring really is lower in the postseason, should you bunt and steal more?   

 
 
Postseason Scoring Analysis 
 
The first test was to actually make sure that the postseason is lower scoring than the regular season.  For the two World Series teams in all 
seasons from 1982 to 2002, I compared their average runs per game in the regular season to their average runs per game in the World Series.  
The results are in Table 1: 

 
 
 

 
 

Table 1 – Run Scoring for teams in the World Series, regular season vs. World Series games 
 
 
 NL team, 

regular 
season 

 
NL team, 
World Series 

 
 
% Change  

 AL team,  
regular 
season 

 
AL team, 
World Series 

 
 
% Change  

2002 4.83 6.29 +30  5.25 5.86 +12 
2001 5.05 5.29 + 5  4.99 2.00 -60 
2000 4.98 3.20 -36  5.38 3.00 -44 
1999 5.19 2.25 -57  5.56 5.25 - 6 
1998 4.62 3.25 -30  5.96 6.50 + 9 
1997 4.57 5.29 +16  5.36 6.29 +17 
1996 4.77 4.33 - 9  5.38 3.00 -44 
1995 3.98 3.83 - 4  5.19 3.16 -39 
1993 5.41 6.00 +11  5.23 7.50 +43 
1992 4.21 3.33 -21  4.81 2.83 -41 
1991 4.62 4.14 -10  4.79 3.43 -28 
1990 4.28 5.50 +28  4.52 2.00 -56 
1989 4.31 3.50 -19  4.40 8.00 +82 
1988 3.88 4.20 + 8  4.94 2.20 -55 
1987 4.93 3.71 -25  4.85 5.43 +12 
1986 4.83 4.57 - 5  4.90 3.86 -21 
1985 4.61 1.86 -60  4.24 4.00 - 6 
1984 4.23 3.00 -29  5.12 4.60 -10 
1983 4.30 1.80 -58  4.93 3.60 -27 
1982 4.23 5.57 +32  5.50 4.71 -14 
Average 4.59 4.05 -12  5.06 4.36 -14 

 
 



The table clearly shows that in almost every year, teams in the World Series score fewer runs than they did in the regular season.  There are a 
couple of years for which this is not true, but there is definitely a trend towards less scoring in the World Series.  Also worth noting is that in 
the years that scoring goes down, it often goes down by a larger percentage than years when scoring increases.  This is reflected in the totals, 
which show that for both leagues combined, scoring drops about 13% in the World Series. 
 
To assess the value of strategies like the sacrifice bunt and steal, we use the 
model previously built by George Lindsey in 1964, and used by Pete Palmer in 
The Hidden Game of Baseball and numerous other studies since.  The Lindsey 
model looks at each base-out situation and then from that point forward gives a 
prediction of the probability of scoring runs and the number of expected runs 
scored.   
 
I built a table of run expectancies and run probabilities using Retrosheet play-
by-play data for each World Series game from 1982-2002.  For each base-out 
situation, I found the number of runs expected to score in the remainder of the 
inning, as well as the probability of scoring. 
 
Table 2 shows the run expectations, and Table 3 the probabilities.  Full data is 
presented in Table 8, at the end of the article. 
 
 
Bunting 
 
To look at bunting strategy, we can use Table 2 to compare the run expectation before and after a bunt.  For instance, with a runner on 
second and nobody out, the run expectation before the bunt is 1.08 runs, 
while after the successful bunt it is only 0.92.  This suggests that bunting is 
not a good idea. 
 
We can also compare the probabilities using Table 3.  Before the bunt with a 
runner on second, the chance of scoring at least one run is 61%.  After the 
bunt, it’s only 44%. 
 
A summary of run values for all bunting situations can be seen in Table 4; the 
probability analysis is Table 5. 
 
It turns out that bunting is not very useful in most situations.  Even a 
successful sacrifice bunt will lower your expected number of runs scored and 

Table 2 – Run Expectations, World Series 
Games, 1982-2002 
 
Men on base 0 out 1 out 2 out 
None  .48  .26  .09 
1  .80  .54  .19 
2 1.08  .62  .35 
1,2 1.62  .92  .43 
3 1.44  .92  .39 
1,3 1.86 1.22  .40 
2,3 1.81 1.81  .56 
Loaded 2.35 1.33  .79 
 

Table 3 – Probability of scoring at least one 
run, World Series Games, 1982-2002 
 
Men on base 0 out 1 out 2 out 
None .26 .16 .06 
1 .39 .27 .12 
2 .61 .39 .22 
1,2 .67 .44 .25 
3 .89 .67 .24 
1,3 .88 .70 .23 
2,3 .77 .75 .26 
Loaded .75 .64 .33 
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your probability of scoring.   
 
There is only one situation that this is not true, which is 1st and 2nd with zero 
outs.  A successful bunt in this case will increase the run expectation, but the 
increase in 
percentage points is 
actually not even 
statistically 
significant.  This 
means there is no 
true evidence that a 
bunt actually is 
beneficial even in 
this situation. 
 
When my data is 
compared to the 
Lindsey and Palmer 
data, they are 
actually surprisingly 
similar.  Palmer 
showed that a 

 

Table 4 – Run Values of Successful Bunts, World Series games 1982-2002 
 

 
 
 
 
Situation 

 
 
Run 
Expectation 
Before Bunt 

Run 
Expectation 
After 
Successful 
Bunt 

 
 
Value of 
Bunt (in 
Runs) 

Runner on 1st, nobody out  .80  .62 - .18 
Runner on 1st, one out  .54  .35 - .19 
Runner on 2nd, nobody out 1.08  .92 - .16 
Runner on 2nd, one out  .62  .39 - .23 
1st and 2nd, nobody out 1.62 1.81 + .19 
1st and 2nd, one out  .92  .43 - .49 
 



sacrifice also always reduces the expected number of runs scored and the probability of scoring.  Stealing also was shown by Palmer to be of 
only marginal value.   
 
This suggests that 
the World Series is 
similar to regular 
season games.  This 
is important 
because this means 
that offensive 
strategy should be 
the same regardless 
of what part of the 
season a team is in.  
A team would have 
no reason to change 
their strategy just 
because they are in 
the postseason.   
 
Another interesting point to take away from this table is that you actually lower your probability of scoring in most situations with a bunt.  
This means that even in a close late inning game when a team bunts to try and score just one run they are even decreasing their chances of 
scoring that one run by utilizing the bunt.  The table shows that there is an increase in the probability of scoring with a runner on 2nd and no 
outs, but if you look at the expected runs table this situation will lead to a lower number of expected runs.  This means a successful bunt in 
this situation will lead to scoring less in this situation, but may increase your chances of scoring a single run.  The most logical situation to 
bunt is with runners on 1st and 2nd and no outs.  In this situation a successful bunt will increase both the probability of scoring and the 
expected number of runs scored.  The key here though is that the bunt must be successful for this to be at all worth it because you are only 
increasing your probability of scoring by about 8%.  If you have a poor bunter up it would probably be smarter to just hit away instead of 
increasing your chances by such a small percentage.  
 
 
Stealing 
 
Steals are different from bunts in that if the steal is successful, you are getting a base without giving up an out, and it is clear from the tables 
that this fact will always increase your expected number of runs scored and your probability of scoring, sometimes to a great degree.  
Because a successful steal has only positive effects, the analysis of steals gives results in terms of a breakeven point.  If you are not at least as 
successful as the breakeven percentage then you should not steal. 

Table 5 – Probabilities of Successful Bunts, World Series games 1982-2002 
 

 
 
 
Situation 

 
Prob. of 
Scoring 
Before Bunt 

Prob. of 
Scoring After 
Successful 
Bunt 

 
 
 
Difference 

Runner on 1st, nobody out  .39  .39   .00 
Runner on 1st, one out  .27  .22 - .05 
Runner on 2nd, nobody out  .61  .67 + .06 
Runner on 2nd, one out  .39  .24 - .15 
1st and 2nd, nobody out  .67  .75 + .08 
1st and 2nd, one out  .44  .26 - .18 
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Table 6 shows the calculation of breakeven points on a Run Expectation basis, and Table 7 repeats the analysis for probabilities. 

Table 6 – Breakeven Points for Steal Situations based on run expectations, World Series 1982-2002 
 
 
 
 
 
Situation 

 
Run 
Expectation 
before steal 
attempt 

Run 
Expectation 
after 
successful 
steal 

 
Run 
Expectation 
after Caught 
Stealing 

 
 
 
Breakeven 
Point 

Runner on 1st, nobody out  .80 1.08 .26 .66 
Runner on 1st, 1 out  .54  .62 .09 .84 
Runner on 1st, 2 outs  .19  .35 .00 .54 
Runner on 2nd, nobody out 1.08 1.44 .26 .69 
Runner on 2nd, 1 out  .62  .92 .09 .64 
Runner on 2nd, 2 outs  .35  .39 .00 .88 
1st and 2nd, nobody out 1.62 1.81 .62 .84 
1st and 2nd, 1 out  .92 1.81 .35 .39 
1st and 2nd, nobody out  .43  .56 .00 .77 
 



 
The breakeven points for the expected number of runs scored are higher than for the probability of scoring because to score many runs in an 
inning getting caught stealing would be a huge detriment.  This also means that when making a decision to steal it should be clear what your 
main goal is at that point of the game.  If you’re only trying to score one run, then the breakeven point is lower.   
 
A better case can be made for stealing than for bunting.  There are situations where it seems it does make sense to try to steal.  While stealing 
is definitely more valuable than bunting, it is still important to steal in the right situation.  There are some cases where stealing simply would 
not make sense, and even a successful steal would not be a huge impact to expected runs scored or the probability of scoring.  Teams should 

almost always steal with a runner on first and two outs.  The other stealing situations would really depend on the situation of the game.  If a 
team is trying to maximize the number of runs scored, it should probably not steal in these other situations, since the breakeven point is so 
much higher for expected runs scored than it is for the probability of scoring.  But if a team is looking for one run and they have a fairly 
successful runner on the bases then it can be worth the gamble.   
 
An interesting situation is first and second with one out; the numbers show this is actually a very good time to steal.  However, the breakeven 
point in the table is probably too low.  The run expectation chart has a run expectation for second-and-third-with-one-out at 1.81 runs, equal 
to the same situation but with zero outs.  This is probably just random noise in the data, where World Series teams simply scored more runs 
in that situation by luck (note the high standard errors for these estimates in Table 8).  The “correct” number is probably lower, which would 
make the breakeven point substantially higher. 

Table 7 – Breakeven Points for Steal Situations based on probabilities, World Series 1982-2002 
 
Situation Prob of 

scoring 
before steal 
attempt 

Prob of 
scoring after 
successful 
steal 

Prob of 
scoring 
after Caught 
Stealing 

 
 
Breakeven 
Point 

Runner on 1st, nobody out .39 .61 .16 .51 
Runner on 1st, 1 out .27 .39 .06 .64 
Runner on 1st, 2 outs .12 .22 .00 .52 
Runner on 2nd, nobody out .61 .89 .16 .55 
Runner on 2nd, 1 out .39 .67 .06 .50 
Runner on 2nd, 2 outs .22 .24 .00 .93 
1st and 2nd, nobody out .67 .77 .39 .74 
1st and 2nd, 1 out .44 .75 .22 .42 
1st and 2nd, nobody out .25 .26 .00 .98 
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Conclusions 
 

This study examined the expected number of runs scored and the probability of scoring for teams in the World Series between 1982-2002.  
Regular season scoring was compared to runs scored during the postseason, and postseason scoring is definitely lower than regular season 
scoring.  Pitching obviously dominates in the postseason, but interestingly this fact does not change how a team should play the game.  
Teams should not change their strategy to bunt and steal more, and in fact teams that do like to bunt and steal might want to reconsider this 
strategy.   
 
The results of this study have made it clear that even in the World Series, teams that bunt are reducing their chances of scoring and 
decreasing their expected runs scored.  In fact, they are helping the other team when they bunt.   The bunt strategy has always been thought 
of as a way to add a crucial run for your team in a close game, but in fact a team would score more often by not bunting.  This means that 
managers are hurting their team when they bunt, and decreasing their team’s chance of winning the game.  Stealing can still make sense in 
some situations during the game, but it should be evaluated to when a steal should take place. 
 
However, one limitation to this study is that the situation may change depending on the skill of the hitter after a poor hitter.  There is a 
possibility a bunt would make sense if a talented hitter follows a poor hitter, and the poor hitter bunts.  A study could be done to see if it 
would make sense for a poor hitter or a pitcher to bunt if there is a talented hitter coming up next.  This study did not take into account such 
line-up effects. 
 



A final insight from this research is the fact that the postseason probabilities were very similar to Lindsey’s, and Palmer’s, regular season 
probabilities.  This could suggest that when two great teams play each other they score as much as an average team.  The final note then 
would be that a bunt simply does not help to beat a great pitcher, and in fact it helps the pitcher.  The best way to beat good pitching is to hit 
away, and pick and choose your time to steal. 

 

Table 8 – Full Situation Data for World Series Games, 1982-2002 
 
 
 
 
Bases 

 
 
 
Outs 

 
 
 
Frequency 

 
 
Relative 
Frequency 

 
 
Expected 
Runs 

Standard 
Error 
(Expected 
Runs) 

 
 
Prob of 
Scoring 

0 0 2157 23.57% 0.48 .021 26.29% 
0 1 1556 17.00% 0.26 .019 15.81% 
0 2 1215 13.28% 0.09 .011  6.09% 
1 0  541  5.91% 0.80 .053 39.00% 
1 1  649  7.09% 0.54 .043 27.27% 
1 2  606  6.62% 0.19 .024 11.55% 
2 0  158  1.73% 1.08 .094 61.39% 
2 1  261  2.85% 0.62 .060 39.08% 
2 2  347  3.79% 0.35 .043 22.19% 
3 0   27  0.30% 1.44 .274 88.89% 
3 1   93  1.02% 0.92 .101 66.67% 
3 2  147  1.61% 0.39 .070 23.81% 
1,2 0  121  1.32% 1.62 .148 66.94% 
1,2 1  231  2.52% 0.92 .088 44.16% 
1,2 2  309  3.38% 0.43 .051 25.24% 
1,3 0   43  0.47% 1.86 .234 88.37% 
1,3 1  123  1.34% 1.22 .118 69.92% 
1,3 2  149  1.63% 0.40 .071 23.49% 
2,3 0   26  0.28% 1.81 .338 76.92% 
2,3 1   79  0.86% 1.81 .179 74.68% 
2,3 2   89  0.97% 0.56 .114 25.84% 
1,2,3 0   20  0.22% 2.35 .460 75.00% 
1,2,3 1   92  1.01% 1.33 .150 64.13% 
1,2,3 2  112  1.22% 0.79 .129 33.04% 
Total  9151     
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