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Review 

Academic Research: Competitive Balance 
Charlie Pavitt 

 

The author reviews an academic study showing an increase in competitive balance due to integration and the influx for foreign players. 

 

 

Martin B. Schmidt, The Nonlinear Behavior of 
Competition: The Impact of Talent 
Compression on Competition, Journal of 
Population Economics, 2009, Volume 22, pp. 
57-74 
 

Schmidt has been a huge contributor to the academic sabermetric 

literature, with ten relevant publications of which I am aware, 

almost all relevant to competitive balance.  As much as this issue 

has been studied, I still think that there is room for further 

analysis, as it is at yet unclear whether the steady improvement in 

balance among teams over the decades has stalled or even 

reversed since 

the mid-1990s. 

What is clear is 

that steady 

improvement 

until at least that 

time, which 

needs no further 

demonstration. 

What it does 

need is 

explanation, and Schmidt’s latest makes what I think to be a 

critical contribution to this issue. 

 

In doing this work, Schmidt sits on the shoulders of the famed 

paleontologist and baseball fan Stephen Jay Gould, whose work I 

will discuss here for readers unfamiliar with it. Gould wrote a 

couple of essays demonstrating through the use of batting 

averages the steady increase in the ability of position players over 

the course of major league baseball history.  Average BAs for 

regulars have drifted around during the decades.  They were in 

the .250s during the first and second decades of the twentieth 

century, in the high .280s in the 1920s, and then fell to around 

.260 between 1940 and 1960.  They dipped below that in next 

decade before popping back toward .260 in the 1970s. In  

contrast, the within-season variation has decreased steadily over 

that time.  In the first essay, Gould showed that the difference 

between the five highest batting averages and the league average 

was in the range of about 90 points during the 19th century, 80 

points the first three decades of the 20th, and 70 points since; the 

difference between the lowest and fifth-lowest began at about 60 

or 70 points and has decreased to about 35 since. In the second 

essay, Gould made the same point in a more statistically 

trustworthy way, presenting the fact that the standard deviation in 

within-season batting averages has decreased from about .05 in at 

the beginning to about .03 at the time of the essay. In both 

analyses, the improvement was asymptotic, occurring quickly at 

the beginning but slowing down toward some yet-unknown 

limiting figure. 

 

Gould’s original 

explanation for this 

effect was the 

standardization of 

play; for example, 

teams have gotten 

progressively savvier 

in positioning their 

fielders, making it 

harder to get hits. But by the second essay he began to realize the 

real explanation; the overall increase in talent. We must assume 

that the greatest stars have been about equally good over the 

interim, which would follow from Gould’s belief that there is a 

limit to ability based on the very facts of human physiology (an 

“outer limit of human capacity”) that the best players can 

approach but never cross. If so, then the average player has 

gotten closer to the stars, and the greater availability of 

competent players has increased the replacement level such that 

.180 hitters are just too poor to play regularly anymore no matter 

how well they field. There is a critical implication of this 

conjecture. Although the number of major league teams has 

almost doubled since 1960, the population from which major 

league players are procured has far more than doubled. Not only 
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has the population of the United States kept up with expansion, the number of players from the other American nations has exploded, along 

with East Asians, an ever-increasing number of Australians, and even the occasional European.  

 

Schmidt (2009) transferred this reasoning into the context of teams. As poorer teams have as a whole have poorer players than good teams, if 

player strength increases mostly at the bottom end, then it will be the poorer teams that get the biggest payoff, thus increasing competitive 

balance. Further, as player improvement is asymptotic, so should be team improvement. Schmidt used team data from 1911-2005 and 

concluded from his analyses that the increase in competitive balance over that period of time was indeed asymptotic, but with a significant 

breakpoint of improvement in the mid 1950s, when the impact of integration on levels of talent would have been at its highest. Further, the 

degree of competitive balance correlates with the proportion of foreign-born players, which has been rising since 1940 from perhaps 2 

percent at best to more than 25 percent. This later result implies that improvements in competitive balance are likely at least partly a result of 

that influx, consistent with Gould in at least the sense that a bigger player pool to chose from means better overall talent. 
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Study 

A Model for Estimating Run Creation 
Richard Schell 

 

There are various run estimators in current use – runs created, linear weights, base runs, etc.  Here, the author comes up with a new 

estimator, deriving it from first principles, and tests its accuracy compared to the others. 

 

 

 

 

 

 

The following describes a model for estimating team run scoring based on the idea that run scoring is directly related to the average number 

of men a team has on base when a batter comes to the plate.  The model can be employed for other purposes, described at the end of the 

paper.  It fits available data exceptionally well compared to other run estimators in use today and has an additional advantage, in that it is 

related to what happens in baseball games. 

 

Background 

The goal of run estimation is manifold.  The first is to take a set of data specific to a team – familiar baseball statistics -- and use that data to 

estimate how many runs that team should or will score.  A second use is to estimate the number of runs a player on a given team created (or 

will create) for his team.  Related to that is the allocation of runs a team actually scored to its players in order to determine the value of that 

player to his team in runs (and wins, following Bill James’s Win Shares statistic [1]. 

 

Familiar run estimators include Bill James’s well-known Runs Created estimators, of which many versions exist.  James introduced this 

formula nearly thirty years ago [2] and has continued to refine it from time to time to improve its fit to available data.  James’s formula for 

estimating runs has a simple form: CBARuns ×= .   What has varied from version to version is what James uses for A, B, and C.  This 

estimator is non-linear – that is, the equation is not a linear equation.  Roughly contemporary with Runs Created is Pete Palmer’s Linear 

Weights [3], whose very name implies that it is a linear estimator – the estimator is a linear equation relating runs to other baseball statistics.  

Obviously, all run estimators are either linear or non-linear.  Among the first category, in addition to Linear Weights, Jim Furtado has 

developed an improvement called Extrapolated Runs (XR) [4], which is quite effective.  David Smyth created a very elegant non-linear 

model, called Base Runs [5], which is similar to Runs Created in some ways, and different in a couple of very important features. 

 

Dan Fox explains that run estimators can be differentiated in a different way: statistical and intuitive [6]. Most linear estimators, such as 

Linear Weights and  XR, are statistical in nature.  They employ linear regression to determine the coefficients, or weights, they assign to 

various baseball events.  Non-linear estimators, such as Bill James’s various Runs Created formulas, as well as BsR are intuitive in nature.  

These categories are useful, even if they are not pure in nature.  (Both James and Smyth tweaked their formulas to fit the available data.  Paul 

Johnson’s Estimated Run Production [7], which is linear in nature, is driven by an intuitive look at how runs are scored.)   

 

To Fox’s two categories, I will add an additional one: constructive models.    Constructive models start with an intuition, such as the one I 

described earlier – namely that run scoring is connected to the average number of men on base, but then use relationships that exist among 

baseball events to construct a model of how run scoring works.   

 
 

Constructing Models 
 

Models can be constructed by examining how runs are scored.  To obtain David Smyth’s model, start from a simple axiom, that the number 

of runs scored cannot exceed the number of men who reach base minus those who are out on base (via double play, being caught stealing, or 

out running the bases on a hit).  In mathematical terms, OutOnBaseeachedRRuns −≤ .  Another way to state this is 

)( OutOnBaseeachedRfRuns −×= , where f is a function that never exceeds the value 1.   A third alternative is to write this as 

)( OutOnBaseHReachedRfHRRuns −−×=− , noting that home runs always score one run.  What can be said about f?   It 

should have the value 1 if no batter makes an out, so a good form for it is )( XOWBX + , where OWB stands for “out while batting”, 

including all sacrifice hits and sacrifice flies.  That leads to the run estimator 
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OWBX

OutOnBaseHReachedRX
Runs +

+

−−×
=

)(
 

 

which is the form of Base Runs.  Finding X is a challenge, but one that can be addressed by using linear regression (carefully).    This leads 

to something very like Base Runs, with a single exception – Reached should include reaching on error, a piece of data that is now available 

for a number of teams for a number of seasons, through Retrosheet.  Note that the form of Bill James’s original Runs Created can be written 

in the form TBfRuns ×= , where X is simply RBS ( reaching base safely, not including reaching on error).   There isn’t a fundamental 

premise that leads to the derivation of this form.  As a result, Runs Created is subject to the anomalous behavior mentioned earlier. 

 

Another, more complex, construction starts from the observation that runners who reach base either score, are out on base, or are left at the 

end of an inning.  In mathematical terms, LeftOnBaseOutOnBaseeachedRRuns −−= .   Add to this two additional 

assumptions related to the average number of men on base.  The first assumption is driven by intuition and observation.  It is obvious that a 

home run or triple will (on average) drive in the average number of men on base; a double will drive in a substantial percentage of that 

number; and a single will drive in a smaller percentage, a walk a smaller percentage still.  Because home runs always drive in the batter, they 

should be separated.  The implication of these two principles is that HRmVScored +×= , where V is (hopefully) a linear function 

and m stands for average men on base. 

  

The second assumption can be motivated as follows. If every batter came up with the same average number of men on base as did the last 

batter, then the number of men left on base per inning would be the same as the average number of men on base.  That isn’t the case, for a 

variety of reasons, not the least of which is that the first man in the inning always comes to the plate with no runner on base.    It is intuitive 

that InningsmkLeftOn ××= , where the number k (which could be a variable or a constant) is in the neighborhood of 1.  Data 

indicates (and other models that will be discussed bear out) that this number can be expressed as 2)1( zBOPI −× , where BOPI is short 

for “batter outs per inning” and z is some (fairly small, per actual team data) number.   

 

If these assumptions are combined,  and using the fact that OWBBOPIInnings =× , the result is  

 

OutOnBaseHReachedRmOWBzV −−=××−+ ]2)1([  

 

where OWB stands for “out while batting”.   It is convenient to denote the quantity HReachedBaseR −  by “Occupied”,  and the 

quantity HRScored −  by “TDI” (for teammates driven in).  Then, substituting the result for m  into mVTDI ×=  yields 

 

OWBzV

OutOnBaseOccupiedV
TDI

×−+×

−××
=

)1(2

)(2
 

 

The problem is that V and z are both unknown.  They can both be obtained using linear regression techniques (and some tricks with algebra), 

but that obscures what is going on to actually score runs.  The variable z is small, and doesn’t vary much, according to historical data, so the 

real problem is in V.  Empirically, UHRTBV +−= 3)(  where U includes terms in doubles, triples, stolen bases, sacrifice hits, and 

sacrifice flies1. 

 

A Third Construction 

Markov models can be used as a tool to develop a better model, one that has a clearer relationship to what happens in the game.  Markov 

models are based on stochastic processes that model real world activities, such as baseball games.  Simply put, they explain how an inning is 

likely  to progress from one batter to the next.  That enables determining the average state of the game, including such numbers as average 

men on base, average men on first, second, and third, average scoring from any given base, and so on.   Their application requires matrix 

                                                                 
1 David Smyth asked in an online forum whether sacrifice flies should be given special treatment in run estimation models.  In an early version of the run 

estimation model described here, sacrifice flies were given the same treatment as home runs; in the current version, they are treated as a variable part of V.  

Both treatments yield roughtly the same “value” for sacrifice flies.  Neither treatment is right or wrong. 
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algebra involving sub-matrices of a 25x25 matrix and row (or column) vectors.  Their actual use is beyond the scope of this paper, but they 

can be useful in deriving certain key expressions and approximations. For a deeper discussion, see [8] and [9]. 

 

A Markov model for baseball [10] can be used to derive the relationship 

 

OWB

OOBkTDIkOccupied
m

)(2 21 ×−×−×
=   

 

The numbers 1k  and 2k  are variable, but can generally be treated as constants for the purposes of modeling the process of run scoring.  

Markov models suggest that these numbers are roughly .8 and .875 2.  This last relationship produces a slightly different formula for run 

estimation.  Using mVTDI ×= , this version yields 

 

VkOWB

OOBkOccupiedV
TDI

××+

×−××
=

1

2

2

)(2
      (Est) 

 

This latter form is identical to the prior one if 1k  and 2k  are both 1. Note the similarity between this formula and Base Runs.  David Smyth 

did not incorporate “out on base” (equivalent to 02 =k ) and had an identical term in the numerator and denominator (equivalent to 

11 =k  and VA ×= 2 ).   

 

To finish the process requires devising a linear function, V, for which mVTDI ×=  holds.  To do that, Markov models can be used to 

derive simple relationships among various averages of men on base – total men on base as well as average numbers of men on each base. A 

really simple sketch proceeds as follows.  Let ,21 ,VV  and 3V  be linear functions that approximate the rate of driving in men from first, 

second, and third base respectively.  Then, the simple relationship 312 mmmm −−=  (where 1m  is the average number of men on 

first, 2m  the average number of men on second, and 3m  the average number of men on third) yields 

 

3231122 )()( mVVmVVmVTDI ×−+×−−×=  

 

The Markov model also produces good approximate coefficients a, b, c, and d, such that  

 

)
3
(13

BFP

OOBdB
cmbmam

×+
×+×−×≈  

 

This enables the equation for TDI to be written in the form 

 

)
3
(3121

BFP

OOBdB
UmUmUTDI

×+
×+×−×=  

 

Ultimately, 1m , as well as the final term in the right hand side, can be related to m.  In this way one obtains a linear function V that includes 

only first-order terms (no constants) for which the relationship mVTDI ×=  holds.  Using historical values to create these 

approximations, and making small adjustments to obtain simple coefficients, yields 

 

)06.)(1.7.1.333.23.(5. SOHBPBBSHSBSFBHRHROETBV ×−++×+×+×+×+×−×−+×=  

 

                                                                 
2 This is equivalent to computing the value of z discussed earlier. 
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Note also that this formula, unlike others, uses reached-on-error3, a statistic that is available for many years through Retrosheet.   Observing 

that m/2 is approximately BFPHomeRunseachedR /)( −  for most actual team data, runs scored can be roughly estimated by 

something of the form  

 

HR
BFP

XHRTBeachedR

BFP

eachedR
XTB ×

+×−+×
−+×+ )

)2(2
1()( .  

 

If X and the term multiplying HR are both negligible (or offset), this is very similar to the original Bill James formula for Runs Created.   

Runs Created works not because it was derived from first principles, but because it approximates a model that was. 

 

Effectiveness 

Is this a good estimator?  The answer is quite good, as measured by first, fit to data.  The following table shows the results using one hundred 

years of data from 1907 through 2006.  The rows in the table show the average values of actual runs, estimated runs, the correlation between 

these, and the standard error for the period since the year in the first column.  (This method is designed to remove era-specific estimation.  

Better results for correlation and standard error can be obtained for any specific span of time, but only at the expense of some other span of 

time.) 

 

Since Actual Est. Correl Std Err 

1907 691.4 691.2 .979 22.68 

1920 704.1 703.6 .978 21.77 

1930 700.6 700.5 .978 21.70 

1940 694.4 695.2 .979 20.97 

1950 697.7 698.3 .980 20.40 

1960 699.1 699.1 .981 19.95 

1970 708.6 709.2 .981 20.08 

1980 721.5 721.0 .982 20.49 

1990 747.6 746.7 .978 20.40 

2000 775.5 775.3 .963 21.67 

 

Since 1960, the estimator performs remarkably well4.  One should not expect an estimator to do much better, because the average variance in 

run scoring for two teams that have identical statistics should be between twenty and twenty one as well. 

 

A comparison of the model’s fit to data against RC, XR, and BsR is quite favorable.  For example, since 1960, the latest technical version of 

RC produces a correlation of .976 and a standard error of 22.9.   Slightly modified versions5 of XR and BsR produce correlations of .978 and 

.979, and standard errors of 22.1 and 21.8, respectively.  Some of the advantage that the model has over RC, XR, and BsR exist because it 

incorporates reached on error (ROE), while the others do not.   It requires a bit of manipulation, but both BsR and XR can be extended to 

include ROE; only the most recent version of RC is amenable to this, one with an elaborate weighting scheme.  The following table 

compares RC, BsR, XR, and the new model since 1960. 

 

 RC BsR XR New Model 
 W ROE W/O W ROE W/O W ROE W/O  

Correl .979 .976 .980 .978 .979 .977 .981 

Stderr 21.1 22.9 21.0 21.8 21.2 22.2 19.9 

  

                                                                 
3 Adding reached on error is an important feature of this model.  Modern teams reach base on error fewer than 70 times (the 2006 league average was 66), 

versus an average of 180 times in 1907.  That difference equates to over fifty runs.  Accounting explicitly for outs on base is also important, as that number 

varies greatly year over year; modern teams hit into more double plays, but are caught stealing fewer times than historical averages. 

 
4 For example, use of linear regression on the period since 1960 produces only slightly better correlation and standard error, but at the expense of estimating 

earlier periods well. 

 
5 The author tweaked coefficients in both models based on findings related to his own model; these tweaks improved both XR and BsR in terms of fit to data.  

The structure of each model was left intact.  Such tweaking was not justified with RC, as Bill James has repeatedly tweaked his own model, unlike Furtado 

and Smyth. 
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All these methods clearly improve with the inclusion of ROE, although the new model still outperforms them. 

 

Fit to data is only one criterion for effectiveness.  This estimator also “explains” why it works.  Intuitively, a relationship exists between 

scoring runs and the average number of men a team has on base.  This model exploits that relationship, yielding good estimates for average 

men on base as well as run scoring.   The fact that the linear function V can be obtained by construction (as well as by linear regression) is, I 

believe, a benefit.  As David Smyth remarked about his own Base Runs in [3], it does a “good job of modeling the scoring process”.  (For 

Smyth, this was more important than standard error.) The men-on-base model improves on Base Runs, in that it provides an explicit 

connection among the terms in the estimator. 

 

The model also explains the net values of various statistics in run scoring.  Using standard mathematical techniques [11], one can derive 

linear functions for run scoring from the non-linear formula denoted in the foregoing by (Est).  These linear functions can be derived from 

team-specific data, from yearly league averages, or from averages over longer periods of time.  For example, using this technique on 

historical averages for various statistics yields linear weights of .498, .751, 1.029, 1.421, and .353 for singles, doubles, triples, home runs, 

and walks (as well as hit by pitch).  It also yields a weight of .168 for stolen bases and -.396 for caught stealing. 

 

Measured in terms of simplicity, this model is not nearly as elegant as James’s original Runs Created, but compared with any of the more 

“accurate” versions of RC, or any other estimator, it holds its own.  It is possible to simplify the expression for V and obtain a reasonable 

result, but at a fair sacrifice to accuracy.  One potential use for this model is allocating team runs to individual players to evaluate their 

performance (see [111]). Using the full model, rather than an abbreviated version, improves the accuracy of this allocation as well. 

 

Summary 
 

The goal of this paper was to elaborate a new model for estimating runs, one that adheres to the process of run scoring that actually occurs 

during games.  Rather than use linear regression to obtain an estimator, it uses fundamental principles. It ties its structure to other run 

estimators, both non-linear and linear.  With indirect help from a stochastic (Markov) model, it produces a formula for run estimation that is 

apparently superior in fitting data to any other simple estimator available6.   
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6 Full Markov models should do better, but are more complex to understand and use. 
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Study 

McCracken and Wang Revisited 
Pete Palmer 

 

The author comments on two issues.  First, Voros McCracken's DIPS theory suggests that pitchers have only a small amount of control over 

whether balls in play turn into base hits.  Here, the author shows how much real-life variances in this ability contribute to ERA differences 

between groups of pitchers.  Second, the author comments on Victor Wang's recent study on OBP and SLG ratios, running regressions to 

provide more data on what linear combination of on-base and slugging best predicts runs. 

 

 

 

Voros McCracken suggested that there is no difference among pitchers for outs per balls in play.  This has been analyzed and contested and 

McCracken backed off somewhat, saying that there is very little difference.  In actuality, there is a fair difference, but not nearly as much as 

would be expected based on the change in earned run average.  However, there is a good reason for that, because counting outs per balls in 

play eliminates most of the real differences between pitchers.  The table below covering data for 2001-2008, a reasonably homogeneous 

sample, shows typical stats for pitchers grouped by earned run average.  In this sample, only pitchers with at least 1/3 of the appearances as 

starters were considered.  This is because relief pitchers have a slight advantage in ERA because all runners on base when they come in are 

charged to the previous pitcher, even though the current pitcher is partly responsible for them.   Including all pitchers changes the results 

only slightly. 

 

 

Statistics for pitchers with at least 1/3 starts, 2001-2008, grouped by ERA 
 
 num 
 pit   era    tbf      h    2b   3b    hr    bb   hb    so    bip  outs  o/bip   oba   slg 

 122  2.64  36.40   7.48  1.45  .16  0.69  2.46  .30  8.08  24.37  17.59  .722  .284  .341 
 162  3.28  37.19   8.15  1.59  .15  0.83  2.67  .28  7.28  25.60  18.29  .714  .301  .372 
 253  3.76  37.88   8.71  1.76  .17  0.97  2.80  .32  6.44  26.80  19.06  .711  .315  .401 
 313  4.25  38.52   9.18  1.89  .19  1.06  2.97  .35  6.17  27.41  19.29  .704  .327  .422 
 284  4.73  39.24   9.70  2.00  .21  1.18  3.14  .37  5.76  28.15  19.63  .698  .340  .446 
 217  5.22  39.95  10.13  2.14  .22  1.29  3.37  .41  5.71  28.52  19.68  .690  .351  .467 
 627  6.41  41.38  11.06  2.33  .24  1.51  3.90  .44  5.55  29.28  19.73  .674  .375  .506 

 

Taking the 2nd and 5th lines, the ratio of era is 5.22/3.28 or 1.59, while the ratio of outs/bip is only .714/.690 or  1.03.  Taking hits/bip 

instead, you still get .310/.286 or 1.08.   For pitchers, runs allowed are proportional to on-base times slugging.  Batters, on the other hand, 

show runs scored as a function of  on-base plus slugging (OPS).  This is because a batter gets dropped in a normal lineup every 9 positions, 

so even a player who hit a home run every time up would add only about 6 runs per game.  A pitcher who gave up a homer every time up 

would allow an infinite number of runs.  So for a hits/bip ratio of 1.08, runs allowed would be charged with about 17% more runs rather than 

59%.   

 

The correlation between outs/bip and earned run average is still fairly decent at an R-squared of 42%; however, on-base times slugging has a 

77% mark.  The slope and intercept show the regression line values.  Correlation is in terms of R in the table.  So the least squares best fit for 

ERA as a function of outs/bip is ERA equals –38.1409 x outs/bip + 31.6966.   Sigma is the standard deviation of ERA using this formula, 

which for outs/bip is 2.1018 runs.  The average ERA is high because each pitcher is counted equally regardless of innings, 

 

 

Regression equation coefficients for predicting ERA from a single other statistic 
 
Item     Mean         Slope       Int   Corr-r   Sigma 

O/BIP    .692      -38.1409   31.6966  -0.6523   2.1018 
OXS      .163       37.7772   -0.8879   0.8778   1.3285 
OPS      .806       16.3936   -7.9314   0.8475   1.4719 
OBA      .349       45.4494  -10.5559   0.8256   1.5647 
SLG      .458       21.6610   -4.6283   0.7900   1.7001 
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What is the difference between a good pitcher and a poor pitcher?  If the good pitcher turns a home run into an extra base hit, his outs/bip 

goes down because there are more BIPs and the same number of outs.  If he turns an extra base hit into a single, he gets no gain at all.  If he 

turns an ordinary out into a strikeout, his outs/bip goes down again because of less BIPs and less outs.  If he turns a walk into a ball in play, 

his outs/bip is unaffected, assuming the batter would make outs at the same rate as existing batters.  The only time he makes a gain is if he 

turns a single (or, equally, a non-HR hit) into an out. 

 

Looking at linear weights instead, you can see that only about 25% of the total difference between pitchers in the 2nd and 5th groups is 

explained by outs/bip.  Since doubles and triples count as singles in outs/bip, only the difference between a single and the double or triple is 

counted.  The difference in actual runs is slightly higher than the difference in earned runs.   

 

 

Components of the ERA difference between the sixth group (5.22) and the second group (3.28) 
(all figures per nine innings) 
 

item  2nd     5
th
   diff   weight     net 

ERA  3.28    5.22   1.94    1.00   1.940 
R    3.59    5.65   2.06    1.00   2.060 
 

HR    .83    1.29    .46    1.40    .644 
3B    .15     .22    .07     .55*   .038 
2B   1.59    2.14    .55     .38*   .220 
BB   2.67    3.37    .70     .33    .231 
HB    .28     .41    .13     .33    .053 
SO   7.28    5.71  -1.57    -.28    .440 
 
1B   8.15   10.13   1.98     .47    .931 
out 18.29   19.68   1.39    -.28   -.389 

                                   2.168 
*as compared to a single 

 
For example: the second group gave up .83 home runs per nine innings.  The fifth group gave up 1.29.  
The difference is .46 home runs.  Multiplied by a linear weight of 1.4, we see that differences in 
home run rates was responsible for .644 runs per nine innings between the two groups. 

 

 

There has been talk that on-base average is more important than slugging average in correlating with team runs.  This was first reported in 

Michael Lewis’ Moneyball, where Oakland had determined that the ratio should be 3 to 1.  Mark Pankin gave a talk at SABR which 

proposed 2 to 1, or  to be more exact, 1.8 to 1.  Victor Wang in this publication verified 1.8.  However, he also showed that the differences 

for various values in correlation to team runs was very small.  OPS is an approximation of NOPS, normalized OPS, which correlates directly 

with run scoring.  The formula is oba/lg + slg/lg – 1, where lg is the league average.  This has the effect of weighting oba slightly higher than 

slg, since the league average oba is around .333 and slugging is around .400.  This results in weighting oba 1.20 times slg.   An increase of 

20% in oba and 20% in slugging results in run scoring at 40% above average.  However OPS shows only a 20% increase.  NOPS itself is an 

approximation of linear weight runs. 

 

When you compare OBA and SLG to team runs, you have to use runs per inning batted, because high scoring teams will usually win more 

games and therefore bat in less innings.  This is of course due to the fact that the home team does not bat in the last of the ninth if ahead.   

Using runs per game will show these teams often to score less runs than predicted. 

 

Here is a trick you can use to amaze your friends.  All you need are complete batting and pitching stats for a team, except wins and losses.  

You can calculate innings batted by taking total plate appearances minus runs and minus left on base, all divided by 3.  You already have 

innings pitched from the team pitching.  Wins are simply equal to games over 2 plus innings pitched minus innings batted.  This is because 

for each home win, you have one less inning batted and one each road win you have one more inning pitched.   The only problem involves 

games that are won in the last inning by the home team, but these tend to cancel out.  The standard deviation using this method is about 2 

wins per year, compared to 4 using normal methods employing team runs scored and allowed.  This does not work for teams that have an 

unbalanced home/away schedule, which occurred during the strikes of 1981 and 1994.  Also in 1991, Montreal was forced to play their last 

26 games on the road because of structural problems at Olympic Stadium, losing about 13 home games. 

 

An aside on comparing runs to wins:  Bill James’ Pythagorean Theorem calculates winning percentage by taking runs scored squared divided 

by the sum of runs scored squared plus runs allowed squared.  The best method varies over the years, but in some cases, using an exponent 
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of 1.83 works better than 2.  This formula caused Bill to take 20 years to figure the relationship between runs created and wins when he 

developed Win Shares.  There is a much easier formula that makes the relationship between runs and wins much more obvious, namely 10 

runs per win.  This states that for every 10 runs more scored or 10 runs less allowed, the team will win one more game.  So wins equals runs 

scored minus runs allowed, all over 10, plus games over 2.   Bill’s formula works better for high scoring teams or teams with a big run 

differential, like 160 or more.  The easy formula can match this using a divisor of 10 times the square root of runs scored per inning by both 

teams.   For example, if the runs per game is 6, the runs scored per inning by both teams would be 12/9, which would give 11.5 runs per win.   

Since most teams have small run differences, extreme cases where one method might be better than another get swamped, so you have to 

look at the unusual cases to find a difference in methods. 

 

Typical results for various periods are shown below. 

 

 

Standard Deviations of various Wins-From-Runs estimators 
 
         Minimum run               standard deviation in wins 
period   difference  teams  runs(10) runs(sqi) Pythag(2) Pythag(1.83) 

1900-19        0       328    4.65      4.34       4.51       4.32 
1900-19      160        79    4.88      4.30       5.08       4.89 
 
1920-99        0      1622    4.06      3.95       4.05       3.96 
1920-99      160       269    4.29      3.91       4.11       3.95 
1920-99      240        70    5.00      4.47       4.84       4.65 
1920-99      300        18    6.49      5.12       5.04       4.83 
 
2000-08        0       270    4.09      4.06       4.06       4.08 
2000-08      160        33    4.20      4.13       4.29       4.27 
  

 

If you knew exactly how good each team was at the beginning of the season and tried to predict how many games they would win, the 

expected standard deviation for each team would be square root of (pqn), where p is the probability of winning, q is the probability of losing 

(which equals 1-p) and n is the number of games.   

 

For 162 games, this is the square root of 40.5 or 6.34.  Yet the derived values are much less, around 4.  This is because at the end of the 

season you have more data, namely the actual number of runs scored and allowed.  Even though a team was known to be a .500 team, if by 

luck they scored more runs than allowed, they would usually win a few more games.  So what is the absolute minimum that can be achieved?  

Looking at all teams from 1920 to 2008 who had a run differential of 5 or less (84 teams), the standard deviation of wins was 4.07, which 

suggests that 4 is about the best that can be done. 

 

Now let’s get back to the OBA multiplier.  I used values of x between 0.5 and 1.5 and compared OPS as calculated by x times OBA + (2-x) 

times SLG to team runs per 27 outs.  So OBA over SLG equals x over (1-x).  There was very little difference for an OBA to SLG ratio of 

about 1.3 up to 2.3.    Looking at 2000 through 2008,  the lowest sigma was around 0.16 runs per game or about 25 runs per season, which is 

about the best you can do without bringing in steals and double plays.   The broad minimum varied only from around 0.158 to 0.160 or 

about 0.3 runs per year. 

 

 

Results of team run regressions for various weightings of OBA and SLG, 2000-2008 
 
 OBA   SLG  RATIO   OPS   RPG    SLOPE       INT   CORR-R    SIGMA 

 0.50  1.50  0.33  .804  4.82  11.3611   -4.3077   0.9211   0.1959 
 0.55  1.45  0.38  .799  4.82  11.5871   -4.4373   0.9238   0.1927 
 0.60  1.40  0.43  .795  4.82  11.8191   -4.5697   0.9265   0.1893 
 0.65  1.35  0.48  .790  4.82  12.0579   -4.7053   0.9291   0.1860 
 0.70  1.30  0.54  .786  4.82  12.2997   -4.8411   0.9318   0.1827 
 0.75  1.25  0.60  .781  4.82  12.5447   -4.9773   0.9341   0.1796 
 0.80  1.20  0.67  .777  4.82  12.7927   -5.1136   0.9364   0.1766 
 0.85  1.15  0.74  .772  4.82  13.0545   -5.2583   0.9388   0.1733 
 0.90  1.10  0.82  .768  4.82  13.3139   -5.3988   0.9409   0.1705 
 0.95  1.05  0.90  .763  4.82  13.5808   -5.5427   0.9429   0.1676 
 1.00  1.00  1.00  .759  4.82  13.8493   -5.6854   0.9447   0.1650 
 1.05  0.95  1.11  .754  4.82  14.1102   -5.8200   0.9460   0.1631 
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 1.10  0.90  1.22  .750  4.82  14.3830   -5.9612   0.9473   0.1612 
 1.15  0.85  1.35  .745  4.82  14.6527   -6.0977   0.9484   0.1596 
 1.20  0.80  1.50  .741  4.82  14.9256   -6.2340   0.9491   0.1585 

 1.25  0.75  1.67  .736  4.82  15.1916   -6.3628   0.9495   0.1579 

 1.30  0.70  1.86  .732  4.82  15.4619   -6.4924   0.9495   0.1579 

 1.35  0.65  2.08  .727  4.82  15.7255   -6.6147   0.9491   0.1585 
 1.40  0.60  2.33  .723  4.82  15.9762   -6.7253   0.9481   0.1600 
 1.45  0.55  2.64  .718  4.82  16.2319   -6.8372   0.9468   0.1619 
 1.50  0.50  3.00  .714  4.82  16.4627   -6.9291   0.9447   0.1650 

 

 

The 1920-1999 period had a slightly higher run variation between predicted and actual, but the broad minimum had about the same range.  I 

started at 1920 because that is the first year that left on base stats were kept. 
 
 

Results of team run regressions for various weightings of OBA and SLG, 1920-1999 
 
 OBA   SLG  RATIO   OPS   RPG    SLOPE      INT    CORR-R    SIGMA 

 0.50  1.50  0.33  .747  4.47  11.1666   -3.8749   0.9197   0.2631 
 0.55  1.45  0.38  .744  4.47  11.3890   -4.0077   0.9231   0.2577 
 0.60  1.40  0.43  .741  4.47  11.6256   -4.1498   0.9268   0.2516 
 0.65  1.35  0.48  .739  4.47  11.8700   -4.2962   0.9304   0.2455 
 0.70  1.30  0.54  .736  4.47  12.1094   -4.4375   0.9337   0.2398 
 0.75  1.25  0.60  .733  4.47  12.3567   -4.5832   0.9371   0.2338 
 0.80  1.20  0.67  .730  4.47  12.6045   -4.7278   0.9402   0.2281 
 0.85  1.15  0.74  .727  4.47  12.8579   -4.8750   0.9432   0.2225 
 0.90  1.10  0.82  .724  4.47  13.1182   -5.0258   0.9462   0.2168 
 0.95  1.05  0.90  .721  4.47  13.3750   -5.1724   0.9489   0.2114 
 1.00  1.00  1.00  .718  4.47  13.6337   -5.3190   0.9514   0.2063 
 1.05  0.95  1.11  .715  4.47  13.8978   -5.4679   0.9537   0.2014 
 1.10  0.90  1.22  .712  4.47  14.1684   -5.6199   0.9561   0.1964 
 1.15  0.85  1.35  .709  4.47  14.4169   -5.7546   0.9574   0.1935 
 1.20  0.80  1.50  .706  4.47  14.6867   -5.9029   0.9591   0.1896 
 1.25  0.75  1.67  .703  4.47  14.9396   -6.0378   0.9602   0.1872 
 1.30  0.70  1.86  .700  4.47  15.1927   -6.1712   0.9608   0.1858 

 1.35  0.65  2.08  .698  4.47  15.4390   -6.2986   0.9610   0.1852 

 1.40  0.60  2.33  .695  4.47  15.6761   -6.4180   0.9608   0.1856 
 1.45  0.55  2.64  .692  4.47  15.9015   -6.5279   0.9600   0.1876 
 1.50  0.50  3.00  .689  4.47  16.1211   -6.6325   0.9587   0.1905  
 
 

1900 to 1920 was quite a bit worse, and the broad minimum was around a 1.0 OBA to SLG ratio.  This was probably due to the fact that 

there were fewer homers and a higher correlation between batting average and slugging average.  Stolen bases, not included in OPS, were 

more important.   There were more errors and more unearned runs.  The percent of unearned runs was 32% in 1900, 20% in 1920, 14% in 

1930 and 8% today.  The lack of left on base stats made the innings batted calculation less accurate, as I had to derive it using team wins and 

losses instead.   Another problem resulted from trying to apply the same regression line over a period where things were changing.  If the 

sample was divided into two parts, then the best results for 1900-1909 was a sigma of  0.2563 runs per game at a ratio of 1.35, and for 1910-

19, it was a sigma of 0.2140 runs per game at a ratio of 1.86.   Changing to 5 year intervals reduced the runs per game by another 10%, with 

a ratio around 1.8. 
  
 

Results of team run regressions for various weightings of OBA and SLG, 1900-1920 
 
 OBA   SLG  RATIO   OPS   RPG    SLOPE       INT   CORR-R    SIGMA 

 0.50  1.50  0.33  .658  4.02  12.7592   -4.3779   0.8774   0.3519 
 0.55  1.45  0.38  .657  4.02  12.9292   -4.4791   0.8791   0.3497 
 0.60  1.40  0.43  .656  4.02  13.0992   -4.5801   0.8805   0.3477 
 0.65  1.35  0.48  .655  4.02  13.2704   -4.6816   0.8820   0.3457 
 0.70  1.30  0.54  .655  4.02  13.4375   -4.7801   0.8832   0.3441 
 0.75  1.25  0.60  .654  4.02  13.6058   -4.8791   0.8842   0.3426 
 0.80  1.20  0.67  .653  4.02  13.7725   -4.9768   0.8852   0.3413 
 0.85  1.15  0.74  .652  4.02  13.9374   -5.0731   0.8859   0.3402 
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 0.90  1.10  0.82  .651  4.02  14.0990   -5.1669   0.8865   0.3394 
 0.95  1.05  0.90  .651  4.02  14.2617   -5.2612   0.8870   0.3387 

 1.00  1.00  1.00  .650  4.02  14.4171   -5.3505   0.8872   0.3385 

 1.05  0.95  1.11  .649  4.02  14.5660   -5.4353   0.8870   0.3387 
 1.10  0.90  1.22  .648  4.02  14.7205   -5.5235   0.8869   0.3388 
 1.15  0.85  1.35  .647  4.02  14.8577   -5.6003   0.8863   0.3397 
 1.20  0.80  1.50  .646  4.02  14.9973   -5.6784   0.8856   0.3407 
 1.25  0.75  1.67  .646  4.02  15.1290   -5.7511   0.8845   0.3422 
 1.30  0.70  1.86  .645  4.02  15.2525   -5.8183   0.8832   0.3440 
 1.35  0.65  2.08  .644  4.02  15.3677   -5.8800   0.8815   0.3463 
 1.40  0.60  2.33  .643  4.02  15.4711   -5.9339   0.8795   0.3491 
 1.45  0.55  2.64  .642  4.02  15.5680   -5.9835   0.8771   0.3523 
 1.50  0.50  3.00  .642  4.02  15.6545   -6.0262   0.8745   0.3558 
 

 

So the ratio of the importance of oba to slg for optimal run scoring is probably higher than unity, but the actual difference in team runs over 

the course of a season is small. 
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